talk-data.com talk-data.com

Topic

Azure DevOps

devops ci_cd

3

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data + AI Summit 2025 ×
MLOps That Ships: Accelerating AI Deployment at Vizient

Deploying AI models efficiently and consistently is a challenge many organizations face. This session will explore how Vizient built a standardized MLOps stack using Databricks and Azure DevOps to streamline model development, deployment and monitoring. Attendees will gain insights into how Databricks Asset Bundles were leveraged to create reproducible, scalable pipelines and how Infrastructure-as-Code principles accelerated onboarding for new AI projects. The talk will cover: End-to-end MLOps stack setup, ensuring efficiency and governance CI/CD pipeline architecture, automating model versioning and deployment Standardizing AI model repositories, reducing development and deployment time Lessons learned, including challenges and best practices By the end of this session, participants will have a roadmap for implementing a scalable, reusable MLOps framework that enhances operational efficiency across AI initiatives.

Cross-Cloud Data Mesh with Delta Sharing and UniForm in Mercedes-Benz

In this presentation, we'll show how we achieved a unified development experience for teams working on Mercedes-Benz Data Platforms in AWS and Azure. We will demonstrate how we implemented Azure to AWS and AWS to Azure data product sharing (using Delta Sharing and Cloud Tokens), integration with AWS Glue Iceberg tables through UniForm and automation to drive everything using Azure DevOps Pipelines and DABs. We will also show how to monitor and track cloud egress costs and how we present a consolidated view of all the data products and relevant cost information. The end goal is to show how customers can offer the same user experience to their engineers and not have to worry about which cloud or region the Data Product lives in. Instead, they can enroll in the data product through self-service and have it available to them in minutes, regardless of where it originates.

Deploying Databricks Asset Bundles (DABs) at Scale

This session is repeated.Managing data and AI workloads in Databricks can be complex. Databricks Asset Bundles (DABs) simplify this by enabling declarative, Git-driven deployment workflows for notebooks, jobs, Lakeflow Declarative Pipelines, dashboards, ML models and more.Join the DABs Team for a Deep Dive and learn about:The Basics: Understanding Databricks asset bundlesDeclare, define and deploy assets, follow best practices, use templates and manage dependenciesCI/CD & Governance: Automate deployments with GitHub Actions/Azure DevOps, manage Dev vs. Prod differences, and ensure reproducibilityWhat’s new and what's coming up! AI/BI Dashboard support, Databricks Apps support, a Pythonic interface and workspace-based deploymentIf you're a data engineer, ML practitioner or platform architect, this talk will provide practical insights to improve reliability, efficiency and compliance in your Databricks workflows.