talk-data.com talk-data.com

Topic

data-mesh

9

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

9 activities · Newest first

Implementing Data Mesh

As data continues to grow and become more complex, organizations seek innovative solutions to manage their data effectively. Data mesh is one solution that provides a new approach to managing data in complex organizations. This practical guide offers step-by-step guidance on how to implement data mesh in your organization. In this book, Jean-Georges Perrin and Eric Broda focus on the key components of data mesh and provide practical advice supported by code. Data engineers, architects, and analysts will explore a simple and intuitive process for identifying key data mesh components and data products. You'll learn a consistent set of interfaces and access methods that make data products easy to consume. This approach ensures that your data products are easily accessible and the data mesh ecosystem is easy to navigate. This book helps you: Identify, define, and build data products that interoperate within an enterprise data mesh Build a data mesh fabric that binds data products together Build and deploy data products in a data mesh Establish the organizational structure to operate data products, data platforms, and data fabric Learn an innovative architecture that brings data products and data fabric together into the data mesh About the authors: Jean-Georges "JG" Perrin is a technology leader focusing on building innovative and modern data platforms. Eric Broda is a technology executive, practitioner, and founder of a boutique consulting firm that helps global enterprises realize value from data.

Engineering Data Mesh in Azure Cloud

Discover how to implement a modern data mesh architecture using Microsoft Azure's Cloud Adoption Framework. In this book, you'll learn the strategies to decentralize data while maintaining strong governance, turning your current analytics struggles into scalable and streamlined processes. Unlock the potential of data mesh to achieve advanced and democratized analytics platforms. What this Book will help me do Learn to decentralize data governance and integrate data domains effectively. Master strategies for building and implementing data contracts suited to your organization's needs. Explore how to design a landing zone for a data mesh using Azure's Cloud Adoption Framework. Understand how to apply key architecture patterns for analytics, including AI and machine learning. Gain the knowledge to scale analytics frameworks using modern cloud-based platforms. Author(s) None Deswandikar is a seasoned data architect with extensive experience in implementing cutting-edge data solutions in the cloud. With a passion for simplifying complex data strategies, None brings real-world customer experiences into practical guidance. This book reflects None's dedication to helping organizations achieve their data goals with clarity and effectiveness. Who is it for? This book is ideal for chief data officers, data architects, and engineers seeking to transform data analytics frameworks to accommodate advanced workloads. Especially useful for professionals aiming to implement cloud-based data mesh solutions, it assumes familiarity with centralized data systems, data lakes, and data integration techniques. If modernizing your organization's data strategy appeals to you, this book is for you.

Data Fabric Architectures

The immense increase on the size and type of real time data generated across various edge computing platform results in unstructured databases and data silos. This edited book gathers together an international set of researchers to investigate the possibilities offered by data-fabric solutions; the volume focuses in particular on data architectures and on semantic changes in future data landscapes.

Building an Event-Driven Data Mesh

The exponential growth of data combined with the need to derive real-time business value is a critical issue today. An event-driven data mesh can power real-time operational and analytical workloads, all from a single set of data product streams. With practical real-world examples, this book shows you how to successfully design and build an event-driven data mesh. Building an Event-Driven Data Mesh provides: Practical tips for iteratively building your own event-driven data mesh, including hurdles you'll experience, possible solutions, and how to obtain real value as soon as possible Solutions to pitfalls you may encounter when moving your organization from monoliths to event-driven architectures A clear understanding of how events relate to systems and other events in the same stream and across streams A realistic look at event modeling options, such as fact, delta, and command type events, including how these choices will impact your data products Best practices for handling events at scale, privacy, and regulatory compliance Advice on asynchronous communication and handling eventual consistency

Principles of Data Fabric

In "Principles of Data Fabric," you will gain a comprehensive understanding of Data Fabric solutions and architectures. This book provides a clear picture of how to design, implement, and optimize Data Fabric solutions to tackle complex data challenges. By the end, you'll be equipped with the knowledge to unify and leverage your organizational data efficiently. What this Book will help me do Design and architect Data Fabric solutions tailored to specific organizational needs. Learn to integrate Data Fabric with DataOps and Data Mesh for holistic data management. Master the principles of Data Governance and Self-Service analytics within the Data Fabric. Implement best practices for distributed data management and regulatory compliance. Apply industry insights and frameworks to optimize Data Fabric deployment. Author(s) Sonia Mezzetta, the author of "Principles of Data Fabric," is an experienced data professional with a deep understanding of data management frameworks and architectures like Data Fabric, Data Mesh, and DataOps. With years of industry expertise, Sonia has helped organizations implement effective data strategies. Her writing combines technical know-how with an approachable style to enlighten and guide readers on their data journey. Who is it for? This book is ideal for data engineers, data architects, and business analysts who seek to understand and implement Data Fabric solutions. It will also appeal to senior data professionals like Chief Data Officers aiming to integrate Data Fabric into their enterprises. Novice to intermediate knowledge of data management would be beneficial for readers. The content provides clear pathways to achieve actionable results in data strategies.

Data Fabric and Data Mesh Approaches with AI: A Guide to AI-based Data Cataloging, Governance, Integration, Orchestration, and Consumption

Understand modern data fabric and data mesh concepts using AI-based self-service data discovery and delivery capabilities, a range of intelligent data integration styles, and automated unified data governance—all designed to deliver "data as a product" within hybrid cloud landscapes. This book teaches you how to successfully deploy state-of-the-art data mesh solutions and gain a comprehensive overview on how a data fabric architecture uses artificial intelligence (AI) and machine learning (ML) for automated metadata management and self-service data discovery and consumption. You will learn how data fabric and data mesh relate to other concepts such as data DataOps, MLOps, AIDevOps, and more. Many examples are included to demonstrate how to modernize the consumption of data to enable a shopping-for-data (data as a product) experience. By the end of this book, you will understand the data fabric concept and architecture as it relates to themes such as automated unifieddata governance and compliance, enterprise information architecture, AI and hybrid cloud landscapes, and intelligent cataloging and metadata management. What You Will Learn Discover best practices and methods to successfully implement a data fabric architecture and data mesh solution Understand key data fabric capabilities, e.g., self-service data discovery, intelligent data integration techniques, intelligent cataloging and metadata management, and trustworthy AI Recognize the importance of data fabric to accelerate digital transformation and democratize data access Dive into important data fabric topics, addressing current data fabric challenges Conceive data fabric and data mesh concepts holistically within an enterprise context Become acquainted with the business benefits of data fabric and data mesh Who This Book Is For Anyone who is interested in deploying modern data fabric architectures and data mesh solutions within an enterprise, including IT and business leaders, data governance and data office professionals, data stewards and engineers, data scientists, and information and data architects. Readers should have a basic understanding of enterprise information architecture.

Data Mesh in Action

Revolutionize the way your organization approaches data with a data mesh! This new decentralized architecture outpaces monolithic lakes and warehouses and can work for a company of any size. In Data Mesh in Action you will learn how to: Implement a data mesh in your organization Turn data into a data product Move from your current data architecture to a data mesh Identify data domains, and decompose an organization into smaller, manageable domains Set up the central governance and local governance levels over data Balance responsibilities between the two levels of governance Establish a platform that allows efficient connection of distributed data products and automated governance Data Mesh in Action reveals how this groundbreaking architecture looks for both startups and large enterprises. You won’t need any new technology—this book shows you how to start implementing a data mesh with flexible processes and organizational change. You’ll explore both an extended case study and real-world examples. As you go, you’ll be expertly guided through discussions around Socio-Technical Architecture and Domain-Driven Design with the goal of building a sleek data-as-a-product system. Plus, dozens of workshop techniques for both in-person and remote meetings help you onboard colleagues and drive a successful transition. About the Technology Business increasingly relies on efficiently storing and accessing large volumes of data. The data mesh is a new way to decentralize data management that radically improves security and discoverability. A well-designed data mesh simplifies self-service data consumption and reduces the bottlenecks created by monolithic data architectures. About the Book Data Mesh in Action teaches you pragmatic ways to decentralize your data and organize it into an effective data mesh. You’ll start by building a minimum viable data product, which you’ll expand into a self-service data platform, chapter-by-chapter. You’ll love the book’s unique “sliders” that adjust the mesh to meet your specific needs. You’ll also learn processes and leadership techniques that will change the way you and your colleagues think about data. What's Inside Decompose an organization into manageable domains Turn data into a data product Set up central and local governance levels Build a fit-for-purpose data platform Improve management, initiation, and support techniques About the Reader For data professionals. Requires no specific programming stack or data platform. About the Authors Jacek Majchrzak is a hands-on lead data architect. Dr. Sven Balnojan manages data products and teams. Dr. Marian Siwiak is a data scientist and a management consultant for IT, scientific, and technical projects. Quotes This book teleports you into the seat of the chief architect on a data mesh project. - From the Foreword by Jean-Georges Perrin, PayPal A must-read for anyone who works in data. - Prukalpa Sankar, Co-Founder of Atlan Satisfies all those ‘what’, ‘why’, and ‘how’ questions. A unique blend of process and technology, and an excellent, example-driven resource. - Shiroshica Kulatilake, WSO2 The starting point for your journey in the new generation of data platforms. - Arnaud Castelltort, University of Montpellier

Data Mesh

We're at an inflection point in data, where our data management solutions no longer match the complexity of organizations, the proliferation of data sources, and the scope of our aspirations to get value from data with AI and analytics. In this practical book, author Zhamak Dehghani introduces data mesh, a decentralized sociotechnical paradigm drawn from modern distributed architecture that provides a new approach to sourcing, sharing, accessing, and managing analytical data at scale. Dehghani guides practitioners, architects, technical leaders, and decision makers on their journey from traditional big data architecture to a distributed and multidimensional approach to analytical data management. Data mesh treats data as a product, considers domains as a primary concern, applies platform thinking to create self-serve data infrastructure, and introduces a federated computational model of data governance. Get a complete introduction to data mesh principles and its constituents Design a data mesh architecture Guide a data mesh strategy and execution Navigate organizational design to a decentralized data ownership model Move beyond traditional data warehouses and lakes to a distributed data mesh

Data Mesh in Practice

The data mesh is poised to replace data lakes and data warehouses as the dominant architectural pattern in data and analytics. By promoting the concept of domain-focused data products that go beyond file sharing, data mesh helps you deal with data quality at scale by establishing true data ownership. This approach is so new, however, that many misconceptions and a general lack of practical experience for implementing data mesh are widespread. With this report, you'll learn how to successfully overcome challenges in the adoption process. By drawing on their experience building large-scale data infrastructure, designing data architectures, and contributing to data strategies of large and successful corporations, authors Max Schultze and Arif Wider have identified the most common pain points along the data mesh journey. You'll examine the foundations of the data mesh paradigm and gain both technical and organizational insights. This report is ideal for companies just starting to work with data, for organizations already in the process of transforming their data infrastructure landscape, as well as for advanced companies working on federated governance setups for a sustainable data-driven future. This report covers: Data mesh principles and practical examples for getting started Typical challenges and solutions you'll encounter when implementing a data mesh Data mesh pillars including domain ownership, data as a product, and infrastructure as a platform How to move toward a decentralized data product and build a data infrastructure platform