talk-data.com talk-data.com

Topic

data-science-domains

46

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

46 activities · Newest first

Evolutionary Computation with Biogeography-based Optimization

Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This manuscript intends to explain the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This manuscript intends to explain the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.

Metaheuristics for String Problems in Bio-informatics

So-called string problems are abundant in bioinformatics and computational biology. New optimization problems dealing with DNA or protein sequences are constantly arising and researchers are highly in need of efficient optimization techniques for solving them. One obstacle for optimization practitioners is the atypical nature of these problems which require an interdisciplinary approach in order to solve them efficiently and accurately.

Bio-Inspired Computing and Networking

From ant-inspired allocation to a swarm algorithm derived from honeybees, this book explains how the study of biological systems can significantly improve computing, networking, and robotics. Containing contributions from leading researchers from around the world, the book investigates the fundamental aspects and applications of bio-inspired computing and networking. Presenting the latest advances in bio-inspired communication, computing, networking, clustering, optimization, and robotics, the book considers state-of-the art approaches, novel technologies, and experimental studies.

Genome Annotation

This thorough overview explores automated genome analysis and annotation from its origins to the challenges of next-generation sequencing data analysis. It explains how current analysis strategies were developed, including sequencing strategies, statistical models, and early annotation systems. The authors then present visualization techniques f

Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology

Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications covers the latest trends in the field with special emphasis on their applications. The first part covers the major areas of computational biology, development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques for the study of biological and behavioral systems. The second part covers bioinformatics, an interdisciplinary field concerned with methods for storing, retrieving, organizing, and analyzing biological data. The book also explores the software tools used to generate useful biological knowledge. The third part, on systems biology, explores how to obtain, integrate, and analyze complex datasets from multiple experimental sources using interdisciplinary tools and techniques, with the final section focusing on big data and the collection of datasets so large and complex that it becomes difficult to process using conventional database management systems or traditional data processing applications. Explores all the latest advances in this fast-developing field from an applied perspective Provides the only coherent and comprehensive treatment of the subject available Covers the algorithm development, software design, and database applications that have been developed to foster research

Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology

Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. • Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. • Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. • Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. • Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications. Discusses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems. Presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications. Provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software.

Bioinformatics Data Skills

Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, you’ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand life’s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, you’re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles

Bioinformatics with Python Cookbook

Dive into the intersection of biology and data science with 'Bioinformatics with Python Cookbook.' This book equips you to leverage Python and its ecosystem of libraries to tackle complex challenges in computational biology, covering topics like genomics, phylogenetics, and big data bioinformatics. What this Book will help me do Understand the Python ecosystem specifically tailored for computational biology applications. Analyze and visualize next-generation sequencing data effectively. Explore and simulate population genetics for robust biological research. Utilize the Protein Data Bank to extract critical insights about proteins. Handle big genomics datasets with Python tools for large-scale bioinformatics studies. Author(s) Tiago Antao is an established bioinformatician with expertise in Python programming. With years of practical experience in computational biology, he has tailored this cookbook with detailed and actionable examples. Tiago's mission is to make bioinformatic techniques using Python accessible to researchers of varying skill levels. Who is it for? This book is ideal for researchers, biologists, and data scientists with intermediate Python skills looking to expand their expertise in bioinformatics. It caters to professionals wanting to utilize computational tools for solving biological problems. If you're involved in work or study related to genomics, phylogenetics, or large-scale biology datasets, this guide offers practical solutions. Make the most out of Python in your research journey.

Computational and Visualization Techniques for Structural Bioinformatics Using Chimera

A Step-by-Step Guide to Describing Biomolecular Structure Computational and Visualization Techniques for Structural Bioinformatics Using Chimera shows how to perform computations with Python scripts in the Chimera environment. It focuses on the three core areas needed to study structural bioinformatics: biochemistry, mathematics, and computation. Understand Important Concepts of Structural Bioinformatics The book covers topics that deal primarily with protein structure and includes many exercises that are grounded in biological problems at the molecular level. The text encourages mathematical analysis by providing a firm foundation for computations. It analyzes numerous Python scripts for the Chimera environment, with the scripts and other material available on a supplementary website. Build Python Scripts to Extend the Capabilities of Chimera Through more than 60 exercises that involve the development of Python scripts, the book gives you concrete guidance on using the scripting capabilities of Chimera. You’ll gain experience in solving real problems as well as understand the various applications of linear algebra. You can also use the scripts as starting points for the development of similar applications and use classes from the StructBio toolkit for computations, such as structure overlap, data plotting, scenographics, and display of residue networks.

Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics

An in-depth look at the latest research, methods, and applications in the field of protein bioinformatics This book presents the latest developments in protein bioinformatics, introducing for the first time cutting-edge research results alongside novel algorithmic and AI methods for the analysis of protein data. In one complete, self-contained volume, Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics addresses key challenges facing both computer scientists and biologists, arming readers with tools and techniques for analyzing and interpreting protein data and solving a variety of biological problems. Featuring a collection of authoritative articles by leaders in the field, this work focuses on the analysis of protein sequences, structures, and interaction networks using both traditional algorithms and AI methods. It also examines, in great detail, data preparation, simulation, experiments, evaluation methods, and applications. Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics: Highlights protein analysis applications such as protein-related drug activity comparison Incorporates salient case studies illustrating how to apply the methods outlined in the book Tackles the complex relationship between proteins from a systems biology point of view Relates the topic to other emerging technologies such as data mining and visualization Includes many tables and illustrations demonstrating concepts and performance figures Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics is an essential reference for bioinformatics specialists in research and industry, and for anyone wishing to better understand the rich field of protein bioinformatics.

Bioinformatics for Biomedical Science and Clinical Applications

Contemporary biomedical and clinical research is undergoing constant development thanks to the rapid advancement of various high throughput technologies at the DNA, RNA and protein levels. These technologies can generate vast amounts of raw data, making bioinformatics methodologies essential in their use for basic biomedical and clinical applications. Bioinformatics for biomedical science and clinical applications demonstrates what these cutting-edge technologies can do and examines how to design an appropriate study, including how to deal with data and address specific clinical questions. The first two chapters consider Bioinformatics and analysis of the human genome. The subsequent three chapters cover the introduction of Transcriptomics, Proteomics and Systems biomedical science. The remaining chapters move on to critical developments, clinical information and conclude with domain knowledge and adaptivity. A coherent presentation of concepts, methodologies and practical tools that systematically lead to significant discoveries in the biomedical and clinical area Real examples of cutting edge discoveries The introduction of study types and technologies for all the DNA, RNA and protein levels

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. Focuses on the introduction and analysis of key algorithms Includes case studies for real-world applications Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.

Data Mining for Bioinformatics

Data Mining for Bioinformatics enables researchers to meet the challenge of mining vast amounts of biomolecular data to discover real knowledge. Covering theory, algorithms, and methodologies, as well as data mining technologies, it presents a thorough discussion of data-intensive computations used in data mining applied to bioinformatics. The book explains data mining design concepts to build applications and systems. Showing how to prepare raw data for the mining process, the text is filled with heuristics that speed the data mining process.

Biological Computation

The area of biologically inspired computing, or biological computation, involves the development of new, biologically based techniques for solving difficult computational problems. A unified overview of computer science ideas inspired by biology, Biological Computation presents the most fundamental and significant concepts in this area. In the book, students discover that bacteria communicate, that DNA can be used for performing computations, how evolution solves optimization problems, that the way ants organize their nests can be applied to solve clustering problems, and what the human immune system can teach us about protecting computer networks. The authors discuss more biological examples such as these, along with the computational techniques developed from these scenarios. The text focuses on cellular automata, evolutionary computation, neural networks, and molecular computation. Each chapter explores the biological background, describes the computational techniques, gives examples of applications, discusses possible variants of the techniques, and includes exercises and solutions. The authors use the examples and exercises to illustrate key ideas and techniques. Clearly conveying the essence of the major computational approaches in the field, this book brings students to the point where they can either produce a working implementation of the techniques or effectively use one of the many available implementations. Moreover, the techniques discussed reflect fundamental principles that can be applied beyond bio-inspired computing. Supplementary material is available on Dr. Unger's website.

Computational Intelligence and Pattern Analysis in Biological Informatics

An invaluable tool in Bioinformatics, this unique volume provides both theoretical and experimental results, and describes basic principles of computational intelligence and pattern analysis while deepening the reader's understanding of the ways in which these principles can be used for analyzing biological data in an efficient manner. This book synthesizes current research in the integration of computational intelligence and pattern analysis techniques, either individually or in a hybridized manner. The purpose is to analyze biological data and enable extraction of more meaningful information and insight from it. Biological data for analysis include sequence data, secondary and tertiary structure data, and microarray data. These data types are complex and advanced methods are required, including the use of domain-specific knowledge for reducing search space, dealing with uncertainty, partial truth and imprecision, efficient linear and/or sub-linear scalability, incremental approaches to knowledge discovery, and increased level and intelligence of interactivity with human experts and decision makers Chapters authored by leading researchers in CI in biology informatics. Covers highly relevant topics: rational drug design; analysis of microRNAs and their involvement in human diseases. Supplementary material included: program code and relevant data sets correspond to chapters. Note: The ebook version does not provide access to the companion files.

Bioinformatics and Biomarker Discovery: "Omic" Data Analysis for Personalized Medicine

This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of "omic" data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided with the knowledge needed to assess the requirements, computational approaches and outputs in disease biomarker research. Commentaries from guest experts are also included, containing detailed discussions of methodologies and applications based on specific types of "omic" data, as well as their integration. Covers the main range of data sources currently used for biomarker discovery Covers the main range of data sources currently used for biomarker discovery Puts emphasis on concepts, design principles and methodologies that can be extended or tailored to more specific applications Offers principles and methods for assessing the bioinformatic/biostatistic limitations, strengths and challenges in biomarker discovery studies Discusses systems biology approaches and applications Includes expert chapter commentaries to further discuss relevance of techniques, summarize biological/clinical implications and provide alternative interpretations

Bioinformatics Programming Using Python

Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter

Probabilistic Methods for Bioinformatics

The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach.

Structural Bioinformatics, 2nd Edition

Structural Bioinformatics was the first major effort to show the application of the principles and basic knowledge of the larger field of bioinformatics to questions focusing on macromolecular structure, such as the prediction of protein structure and how proteins carry out cellular functions, and how the application of bioinformatics to these life science issues can improve healthcare by accelerating drug discovery and development. Designed primarily as a reference, the first edition nevertheless saw widespread use as a textbook in graduate and undergraduate university courses dealing with the theories and associated algorithms, resources, and tools used in the analysis, prediction, and theoretical underpinnings of DNA, RNA, and proteins. This new edition contains not only thorough updates of the advances in structural bioinformatics since publication of the first edition, but also features eleven new chapters dealing with frontier areas of high scientific impact, including: sampling and search techniques; use of mass spectrometry; genome functional annotation; and much more. Offering detailed coverage for practitioners while remaining accessible to the novice, Structural Bioinformatics, Second Edition is a valuable resource and an excellent textbook for a range of readers in the bioinformatics and advanced biology fields. Praise for the previous edition: "This book is a gold mine of fundamental and practical information in an area not previously well represented in book form." —Biochemistry and Molecular Education "... destined to become a classic reference work for workers at all levels in structural bioinformatics...recommended with great enthusiasm for educators, researchers, and graduate students." —BAMBED "...a useful and timely summary of a rapidly expanding field." —Nature Structural Biology "...a terrific job in this timely creation of a compilation of articles that appropriately addresses this issue." —Briefings in Bioinformatics