talk-data.com talk-data.com

Topic

ELK

Elasticsearch/ELK Stack

search_engine log_analysis elk_stack

4

tagged

Activity Trend

10 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Luis Bolinches ×
Implementation Guide for IBM Elastic Storage System 3000

This IBM® Redbooks publication introduces and describes the IBM Elastic Storage® Server 3000 (ESS 3000) as a scalable, high-performance data and file management solution. The solution is built on proven IBM Spectrum® Scale technology, formerly IBM General Parallel File System (IBM GPFS). IBM Elastic Storage System 3000 is an all-Flash array platform. This storage platform uses NVMe-attached drives in ESS 3000 to provide significant performance improvements as compared to SAS-attached flash drives. This book provides a technical overview of the ESS 3000 solution and helps you to plan the installation of the environment. We also explain the use cases where we believe it fits best. Our goal is to position this book as the starting point document for customers that would use ESS 3000 as part of their IBM Spectrum Scale setups. This book is targeted toward technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for delivering cost-effective storage solutions with ESS 3000.

Implementation Guide for IBM Elastic Storage System 5000

This IBM® Redbooks® publication introduces and describes the IBM Elastic Storage® Server 5000 (ESS 5000) as a scalable, high-performance data and file management solution. The solution is built on proven IBM Spectrum® Scale technology, formerly IBM General Parallel File System (IBM GPFS). ESS is a modern implementation of software-defined storage, making it easier for you to deploy fast, highly scalable storage for AI and big data. With the lightning-fast NVMe storage technology and industry-leading file management capabilities of IBM Spectrum Scale, the ESS 3000 and ESS 5000 nodes can grow to over YB scalability and can be integrated into a federated global storage system. By consolidating storage requirements from the edge to the core data center — including kubernetes and Red Hat OpenShift — IBM ESS can reduce inefficiency, lower acquisition costs, simplify storage management, eliminate data silos, support multiple demanding workloads, and deliver high performance throughout your organization. This book provides a technical overview of the ESS 5000 solution and helps you to plan the installation of the environment. We also explain the use cases where we believe it fits best. Our goal is to position this book as the starting point document for customers that would use the ESS 5000 as part of their IBM Spectrum Scale setups. This book is targeted toward technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for delivering cost-effective storage solutions with ESS 5000.

IBM Elastic Storage Server Implementation Guide for Version 5.3

This IBM® Redpaper™ publication introduces and describes the IBM Elastic Storage™ Server as a scalable, high-performance data and file management solution. The solution is built on proven IBM Spectrum™ Scale technology, formerly IBM General Parallel File System (GPFS™). IBM Elastic Storage Servers can be implemented for a range of diverse requirements, providing reliability, performance, and scalability. This publication helps you to understand the solution and its architecture and helps you to plan the installation and integration of the environment. The following combination of physical and logical components are required: Hardware Operating system Storage Network Applications This paper provides guidelines for several usage and integration scenarios. Typical scenarios include Cluster Export Services (CES) integration, disaster recovery, and multicluster integration. This paper addresses the needs of technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who must deliver cost-effective cloud services and big data solutions.

IBM Spectrum Scale Best Practices for Genomics Medicine Workloads

Advancing the science of medicine by targeting a disease more precisely with treatment specific to each patient relies on access to that patient's genomics information and the ability to process massive amounts of genomics data quickly. Although genomics data is becoming a critical source for precision medicine, it is expected to create an expanding data ecosystem. Therefore, hospitals, genome centers, medical research centers, and other clinical institutes need to explore new methods of storing, accessing, securing, managing, sharing, and analyzing significant amounts of data. Healthcare and life sciences organizations that are running data-intensive genomics workloads on an IT infrastructure that lacks scalability, flexibility, performance, management, and cognitive capabilities also need to modernize and transform their infrastructure to support current and future requirements. IBM® offers an integrated solution for genomics that is based on composable infrastructure. This solution enables administrators to build an IT environment in a way that disaggregates the underlying compute, storage, and network resources. Such a composable building block based solution for genomics addresses the most complex data management aspect and allows organizations to store, access, manage, and share huge volumes of genome sequencing data. IBM Spectrum™ Scale is software-defined storage that is used to manage storage and provide massive scale, a global namespace, and high-performance data access with many enterprise features. IBM Spectrum Scale™ is used in clustered environments, provides unified access to data via file protocols (POSIX, NFS, and SMB) and object protocols (Swift and S3), and supports analytic workloads via HDFS connectors. Deploying IBM Spectrum Scale and IBM Elastic Storage™ Server (IBM ESS) as a composable storage building block in a Genomics Next Generation Sequencing deployment offers key benefits of performance, scalability, analytics, and collaboration via multiple protocols. This IBM Redpaper™ publication describes a composable solution with detailed architecture definitions for storage, compute, and networking services for genomics next generation sequencing that enable solution architects to benefit from tried-and-tested deployments, to quickly plan and design an end-to-end infrastructure deployment. The preferred practices and fully tested recommendations described in this paper are derived from running GATK Best Practices work flow from the Broad Institute. The scenarios provide all that is required, including ready-to-use configuration and tuning templates for the different building blocks (compute, network, and storage), that can enable simpler deployment and that can enlarge the level of assurance over the performance for genomics workloads. The solution is designed to be elastic in nature, and the disaggregation of the building blocks allows IT administrators to easily and optimally configure the solution with maximum flexibility. The intended audience for this paper is technical decision makers, IT architects, deployment engineers, and administrators who are working in the healthcare domain and who are working on genomics-based workloads.