talk-data.com talk-data.com

Topic

LLM

Large Language Models (LLM)

nlp ai machine_learning

1405

tagged

Activity Trend

158 peak/qtr
2020-Q1 2026-Q1

Activities

1405 activities · Newest first

Beyond AI Accuracy: Building Trustworthy and Responsible AI Application Through Mosaic AI Framework

Generic LLM metrics are useless until it meets your business needs.In this session we will dive deep into creating bespoke custom state-of-the-art AI metrics that matters to you. Discuss best practices on LLM evaluation strategies, when to use LLM judge vs. statistical metrics and many more. Through a live demo using Mosaic AI Framework, we will showcase: How you can build your own custom AI metric tailored to your needs for your GenAI application Implement autonomous AI evaluation suite for complex, multi-agent systems Generate ground truth data at scale and production monitoring strategies Drawing from extensive experience on working with customers on real-world use cases, we will share actionable insights on building a robust AI evaluation framework By the end of this session, you'll be equipped to create AI solutions that are not only powerful but also relevant to your organizations needs. Join us to transform your AI strategy and make a tangible impact on your business!

Building Responsible AI Agents on Databricks

This presentation explores how Databricks' Data Intelligence Platform supports the development and deployment of responsible AI in credit decisioning, ensuring fairness, transparency and regulatory compliance. Key areas include bias and fairness monitoring using Lakehouse Monitoring to track demographic metrics and automated alerts for fairness thresholds. Transparency and explainability are enhanced through the Mosaic AI Agent Framework, SHAP values and LIME for feature importance auditing. Regulatory alignment is achieved via Unity Catalog for data lineage and AIBI dashboards for compliance monitoring. Additionally, LLM reliability and security are ensured through AI guardrails and synthetic datasets to validate model outputs and prevent discriminatory patterns. The platform integrates real-time SME and user feedback via Databricks Apps and AI/BI Genie Space.

Sponsored by: Securiti | Safely Curating Data to Enable Enterprise AI with Databricks

This session will explore how developers can easily select, extract, filter, and control data pre-ingestion to accelerate safe AI. Learn how the Securiti and Databricks partnership empowers Databricks users by providing the critical foundation for unlocking scalability and accelerating trustworthy AI development and adoption.Key Takeaways:● Understand how to leverage data intelligence to establish a foundation for frameworks like OWASP top 10 for LLM’s, NIST AI RMF and Gartner’s TRiSM.● Learn how automated data curation and synching address specific risks while accelerating AI development in Databricks.● Discover how leading organizations are able to apply robust access controls across vast swaths of mostly unstructured data● Learn how to maintain data provenance and control as data is moved and transformed through complex pipelines in the Databricks platform.

Sponsored by: Qubika | Agentic AI In Finance: How To Build Agents Using Databricks And LangGraph

Join us for this session on how to build AI finance agents with Databricks and LangChain. This session introduces a powerful approach to building AI agents by combining a modular framework that integrates LangChain, retrieval-augmented generation (RAG), and Databricks' unified data platform to build intelligent, adaptable finance agents. We’ll walk through the architecture and key components, including Databricks Unity Catalog, ML Flow, and Mosaic AI involved in building a system tailored for complex financial tasks like portfolio analysis, reporting automation, and real-time risk insights. We’ll also showcase a demo of one such agent in action - a Financial Analyst Agent. This agent emulates the expertise of a seasoned data analyst, delivering in-depth analysis in seconds - eliminating the need to wait hours or days for manual reports. The solution provides organizations with 24/7 access to advanced data analysis, enabling faster, smarter decision-making.

Sponsored by: West Monroe | Disruptive Forces: LLMs and the New Age of Data Engineering

Seismic shift Large Language Models are unleashing on data engineering, challenging traditional workflows. LLMs obliterate inefficiencies and redefine productivity. AI powerhouses automate complex tasks like documentation, code translation, and data model development with unprecedented speed and precision. Integrating LLMs into tools promises to reduce offshore dependency, fostering agile onshore innovation. Harnessing LLMs' full potential involves challenges, requiring deep dives into domain-specific data and strategic business alignment. Session will addresses deploying LLMs effectively, overcoming data management hurdles, and fostering collaboration between engineers and stakeholders. Join us to explore a future where LLMs redefine possibilities, inviting you to embrace AI-driven innovation and position your organization as a leader in data engineering.

Driving Secure AI Innovation with Obsidian Security, Databricks, and PointGuard AI

As enterprises adopt AI and Large Language Models (LLMs), securing and governing these models - and the data used to train them - is essential. In this session, learn how Databricks Partner PointGuard AI helps organizations implement the Databricks AI Security Framework to manage AI-specific risks, ensuring security, compliance, and governance across the entire AI lifecycle. Then, discover how Obsidian Security provides a robust approach to AI security, enabling organizations to confidently scale AI applications.

End-to-End Interoperable Data Platform: How Bosch Leverages Databricks Supply Chain Consolidation

This session will showcase Bosch’s journey in consolidating supply chain information using the Databricks platform. It will dive into how Databricks not only acts as the central data lakehouse but also integrates seamlessly with transformative components such as dbt and Large Language Models (LLMs). The talk will highlight best practices, architectural considerations, and the value of an interoperable platform in driving actionable insights and operational excellence across complex supply chain processes. Key Topics and Sections Introduction & Business Context Brief Overview of Bosch’s Supply Chain Challenges and the Need for a Consolidated Data Platform. Strategic Importance of Data-Driven Decision-Making in a Global Supply Chain Environment. Databricks as the Core Data Platform Integrating dbt for Transformation Leveraging LLM Models for Enhanced Insights

Generative AI Merchant Matching

Our project demonstrates building enterprise AI systems cost-effectively, focusing on matching merchant descriptors to known businesses. Using fine-tuned LLMs and advanced search, we created a solution rivaling alternatives at minimal cost. The system works in three steps: A fine-tuned Llama 3 8B model parses merchant descriptors into standardized components. A hybrid search system uses these components to find candidate matches in our database. A Llama 3 70B model then evaluates top candidates, with an AI judge reviewing results for hallucination. We achieved a 400% latency improvement while maintaining accuracy and keeping costs low and each fine-tuning round cost hundreds of dollars. Through careful optimization and simple architecture for a balance between cost, speed and accuracy, we show that small teams with modest budgets can tackle complex problems effectively using this technology. We share key insights on prompt engineering, fine-tuning and cost and latency management.

Sponsored by: Cognizant | How Cognizant Helped RJR Transform Market Intelligence with GenAI

Cognizant developed a GenAI-driven market intelligence chatbot for RJR using Dash UI. This chatbot leverages Databricks Vector Search for vector embeddings and semantic search, along with the DBRX-Instruct LLM model to provide accurate and contextually relevant responses to user queries. The implementation involved loading prepared metadata into a Databricks vector database using the GTE model to create vector embeddings, indexing these embeddings for efficient semantic search, and integrating the DBRX-Instruct LLM into the chat system with prompts to guide the LLM in understanding and responding to user queries. The chatbot also generated responses containing URL links to dashboards with requested numerical values, enhancing user experience and productivity by reducing report navigation and discovery time by 30%. This project stands out due to its innovative AI application, advanced reasoning techniques, user-friendly interface, and seamless integration with MicroStrategy.

LLMOps at Intermountain Health: A Case Study on AI Inventory Agents

In this session, we will delve into the creation of an infrastructure, CI/CD processes and monitoring systems that facilitate the responsible and efficient deployment of Large Language Models (LLMs) at Intermountain Healthcare. Using the "AI Inventory Agents" project as a case study, we will showcase how an LLM Agent can assist in effort and impact estimates, as well as provide insights into various AI products, both custom-built and third-party hosted. This includes their responsible AI certification status, development status and monitoring status (lights on, performance, drift, etc.). Attendees will learn how to build and customize their own LLMOps infrastructure to ensure seamless deployment and monitoring of LLMs, adhering to responsible AI practices.

Sponsored by: Dataiku | Engineering Trustworthy AI Agents with LLM Mesh + Mosaic AI

AI agent systems hold immense promise for automating complex tasks and driving intelligent decision‑making, but only when they are engineered to be both resilient and transparent. In this session we will explore how Dataiku’s LLM Mesh pairs with Databricks Mosaic AI to streamline the entire lifecycle: ingesting and preparing data in the Lakehouse, prompt engineering LLMs hosted on Mosaic AI Model Serving Endpoints, visually orchestrating multi‑step chains, and monitoring them in real time. We’ll walk through a live demo of a Dataiku flow that connects to a Databricks hosted model, adds automated validation, lineage, and human‑in‑the‑loop review, then exposes the agent via Dataiku's Agent Connect interface. You’ll leave with actionable patterns for setting guardrails, logging decisions, and surfacing explanations—so your organization can deploy trustworthy domain‑specific agents faster & safer.

Streamlining AI Application Development With Databricks Apps

Think Databricks is just for data and models? Think again. In this session, you’ll see how to build and scale a full-stack AI app capable of handling thousands of queries per second entirely on Databricks. No extra cloud platforms, no patchwork infrastructure. Just one unified platform with native hosting, LLM integration, secure access, and built-in CI/CD. Learn how Databricks Apps, along with services like Model Serving, Jobs, and Gateways, streamline your architecture, eliminate boilerplate, and accelerate development, from prototype to production.

Sponsored by: Snorkel AI | Evaluating and Improving Performance of Agentic Systems

GenAI systems are evolving beyond basic information retrieval and question answering, becoming sophisticated agents capable of managing multi-turn dialogues and executing complex, multi-step tasks autonomously. However, reliably evaluating and systematically improving their performance remains challenging. In this session, we'll explore methods for assessing the behavior of LLM-driven agentic systems, highlighting techniques and showcasing actionable insights to identify performance bottlenecks and to creating better-aligned, more reliable agentic AI systems.

Adobe’s Security Lakehouse: OCSF, Data Efficiency and Threat Detection at Scale

This session will explore how Adobe uses a sophisticated data security architecture built on the Databricks Data Intelligence Platform, along with the Open Cybersecurity Schema Framework (OCSF), to enable scalable, real-time threat detection across more than 10 PB of security data. We’ll compare different approaches to OCSF implementation and demonstrate how Adobe processes massive security datasets efficiently — reducing query times by 18%, maintaining 99.4% SLA compliance, and supporting 286 security users across 17 teams with over 4,500 daily queries. By using Databricks' Platform for serverless compute, scalable architecture, and LLM-powered recommendations, Adobe has significantly improved processing speed and efficiency, resulting in substantial cost savings. We’ll also highlight how OCSF enables advanced cross-tool analytics and automation, streamlining investigations. Finally, we’ll introduce Databricks’ new open-source OCSF toolkit for scalable security data normalization and invite the community to contribute.

Generating Laughter: Testing and Evaluating the Success of LLMs for Comedy

Nondeterministic AI models, like large language models (LLMs), offer immense creative potential but require new approaches to testing and scalability. Drawing from her experience running New York Times-featured Generative AI comedy shows, Erin uncovers how traditional benchmarks may fall short and how embracing unpredictability can lead to innovative, laugh-inducing results. This talk will explore methods like multi-tiered feedback loops, chaos testing and exploratory user testing, where AI outputs are evaluated not by rigid accuracy standards but by their adaptability and resonance across different contexts — from comedy generation to functional applications. Erin will emphasize the importance of establishing a root source of truth — a reliable dataset or core principle — to manage consistency while embracing creativity. Whether you’re looking to generate a few laughs of your own or explore creative uses of Generative AI, this talk will inspire and delight enthusiasts of all levels.

GenAI for SQL & ETL: Build Multimodal AI Workflows at Scale

Enterprises generate massive amounts of unstructured data — from support tickets and PDFs to emails and product images. But extracting insight from that data requires brittle pipelines and complex tools. Databricks AI Functions make this simpler. In this session, you’ll learn how to apply powerful language and vision models directly within your SQL and ETL workflows — no endpoints, no infrastructure, no rewrites. We’ll explore practical use cases and best practices for analyzing complex documents, classifying issues, translating content, and inspecting images — all in a way that’s scalable, declarative, and secure. What you’ll learn: How to run state-of-the-art LLMs like GPT-4, Claude Sonnet 4, and Llama 4 on your data How to build scalable, multimodal ETL workflows for text and images Best practices for prompts, cost, and error handling in production Real-world examples of GenAI use cases powered by AI Functions

How to Migrate from Teradata to Databricks SQL

Storage and processing costs of your legacy Teradata data warehouses impact your ability to deliver. Migrating your legacy Teradata data warehouse to the Databricks Data Intelligence Platform can accelerate your data modernization journey. In this session, learn the top strategies for completing this data migration. We will cover data type conversion, basic to complex code conversions, validation and reconciliation best practices. How to use Databricks natively hosted LLMs to assist with migration activities. See before-and-after architectures of customers who have migrated, and learn about the benefits they realized.

Scaling Generative AI: Batch Inference Strategies for Foundation Models

Curious how to apply resource-intensive generative AI models across massive datasets without breaking the bank? This session reveals efficient batch inference strategies for foundation models on Databricks. Learn how to architect scalable pipelines that process large volumes of data through LLMs, text-to-image models and other generative AI systems while optimizing for throughput, cost and quality. Key takeaways: Implementing efficient batch processing patterns for foundation models using AI functions Optimizing token usage and prompt engineering for high-volume inference Balancing compute resources between CPU preprocessing and GPU inference Techniques for parallel processing and chunking large datasets through generative models Managing model weights and memory requirements across distributed inference tasks You'll discover how to process any scale of data through your generative AI models efficiently.

Sponsored by: DataNimbus | Building an AI Platform in 30 Days and Shaping the Future with Databricks

Join us as we dive into how Turnpoint Services, in collaboration with DataNimbus, built an Intelligence Platform on Databricks in just 30 days. We'll explore features like MLflow, LLMs, MLOps, Model Registry, Unity Catalog & Dashboard Alerts that powered AI applications such as Demand Forecasting, Customer 360 & Review Automation. Turnpoint’s transformation enabled data-driven decisions, ops efficiency & a better customer experience. Building a modern data foundation on Databricks optimizes resource allocation & drives engagement. We’ll also introduce innovations in DataNimbus Designer: AI Blocks: modular, prompt-driven smart transformers for text data, built visually & deployed directly within Databricks. These capabilities push the boundaries of what's possible on the Databricks platform. Attendees will gain practical insights, whether you're beginning your AI journey or looking to accelerate it.

Comprehensive Guide to MLOps on Databricks

This in-depth session explores advanced MLOps practices for implementing production-grade machine learning workflows on Databricks. We'll examine the complete MLOps journey from foundational principles to sophisticated implementation patterns, covering essential tools including MLflow, Unity Catalog, Feature Stores and version control with Git. Dive into Databricks' latest MLOps capabilities including MLflow 3.0, which enhances the entire ML lifecycle from development to deployment with particular focus on generative AI applications. Key session takeaways include: Advanced MLflow 3.0 features for LLM management and deployment Enterprise-grade governance with Unity Catalog integration Robust promotion patterns across development, staging and production CI/CD pipeline automation for continuous deployment GenAI application evaluation and streamlined deployment