talk-data.com talk-data.com

Topic

Amazon SageMaker

machine_learning ai aws

70

tagged

Activity Trend

35 peak/qtr
2020-Q1 2026-Q1

Activities

70 activities · Newest first

AWS re:Invent 2024 - Customize FMs with advanced techniques using Amazon SageMaker (AIM303)

Amazon SageMaker allows data scientists and ML engineers to accelerate their generative AI journeys by deeply customizing publicly available foundation models (FMs) and deploying them into production applications. The journey begins with Amazon SageMaker JumpStart, an ML hub that provides access to hundreds of publicly available FMs, such as Llama 3, Falcon, and Mistral. Join this session to learn how you can evaluate FMs, select an FM, customize it with advanced techniques, and deploy it—all while implementing AI responsibility, simplifying access control, and enhancing transparency.

Learn more: AWS re:Invent: https://go.aws/reinvent. More AWS events: https://go.aws/3kss9CP

Subscribe: More AWS videos: http://bit.ly/2O3zS75 More AWS events videos: http://bit.ly/316g9t4

About AWS: Amazon Web Services (AWS) hosts events, both online and in-person, bringing the cloud computing community together to connect, collaborate, and learn from AWS experts. AWS is the world's most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—are using AWS to lower costs, become more agile, and innovate faster.

AWSreInvent #AWSreInvent2024

In his presentation, Elad will provide a novel take on Airflow, highlighting its versatility beyond conventional use for scheduled pipelines. He’ll discuss its application as an on-demand tool for initiating and halting jobs, mainly in the Data Science fields, like dataset enrichment and batch prediction via API calls, complete with real-time status tracking and alerts. The talk aims to encourage a fresh approach to Airflow utilization but will also delve into the technical aspects of implementing DAG triggering and cancellation logic. What will the audience learn: Real-life use case of leveraging Airflow capabilities beyond traditional pipeline scheduling, with innovative integration as the infrastructure for ML Platform. Trigger on-demand DAGs through API. Cancel running DAGs. Demonstration of an end-to-end ML pipeline utilizing AWS Sagemaker for batch predictions. Some more Airflow best practices. Join us to learn from Wix’s experience and best practices!

AWS re:Inforce 2024 - How to protect generative AI models using GenAI Secure (DAP322-S)

As enterprises adopt generative AI, one of the biggest challenges is understanding security for data models and preventing unauthorized disclosure of sensitive data. When data models contain malicious code or output sensitive information, it can put enterprises at risk. In this lightning talk, explore GenAI Secure by Cloud Storage Security, which is designed to help organizations secure both data models used by services like Amazon Bedrock or Amazon SageMaker and outputs like text or chats produced by generative AI applications. Come learn how to deploy GenAI Secure and quickly quarantine malicious code and sensitive data exposed to your generative AI application. This presentation is brought to you by Cloud Storage Security, an AWS Partner.

Learn more about AWS re:Inforce at https://go.aws/reinforce.

Subscribe: More AWS videos: http://bit.ly/2O3zS75 More AWS events videos: http://bit.ly/316g9t4

ABOUT AWS Amazon Web Services (AWS) hosts events, both online and in-person, bringing the cloud computing community together to connect, collaborate, and learn from AWS experts.

AWS is the world's most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—are using AWS to lower costs, become more agile, and innovate faster.

reInforce2024 #CloudSecurity #AWS #AmazonWebServices #CloudComputing

How Sonrai Analytics leverages ML to accelerate Precision Medicine (L300) | AWS Events

Learn how Sonrai Analytics leverage AI/ML on AWS to reduce cancer drug trial times. By analysing different data types in the Machine Learning Pipeline, Sonrai Analytics are able to improve diagnosis and treatments for patients worldwide. In this session we will cover some common AI/ML pipeline approaches when building, training and deploying end-to-end AI/ML models on Amazon SageMaker.

Learn more: https://go.aws/3x2mha0 Learn more about AWS events: https://go.aws/3kss9CP

Subscribe: More AWS videos: http://bit.ly/2O3zS75 More AWS events videos: http://bit.ly/316g9t4

ABOUT AWS Amazon Web Services (AWS) hosts events, both online and in-person, bringing the cloud computing community together to connect, collaborate, and learn from AWS experts. AWS is the world’s most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—are using AWS to lower costs, become more agile, and innovate faster.

AWSEvents #GenerativeAI #AI #Cloud #AWSAIandDataConference

The Honest Review of Amazon SageMaker by Wojciech Gawroński

Big Data Europe Onsite and online on 22-25 November in 2022 Learn more about the conference: https://bit.ly/3BlUk9q

Join our next Big Data Europe conference on 22-25 November in 2022 where you will be able to learn from global experts giving technical talks and hand-on workshops in the fields of Big Data, High Load, Data Science, Machine Learning and AI. This time, the conference will be held in a hybrid setting allowing you to attend workshops and listen to expert talks on-site or online.

Sponsored: AWS|Build Generative AI Solution on Open Source Databricks Dolly 2.0 on Amazon SageMaker

Create a custom chat-based solution to query and summarize your data within your VPC using Dolly 2.0 and Amazon SageMaker. In this talk, you will learn about Dolly 2.0, Databricks, state-of-the-art, open source, LLM, available for commercial and Amazon SageMaker, AWS’s premiere toolkit for ML builders. You will learn how to deploy and customize models to reference your data using retrieval augmented generation (RAG) and additional fine tuning techniques…all using open-source components available today.

Talk by: Venkat Viswanathan and Karl Albertsen

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Geospatial Data Analytics on AWS

In "Geospatial Data Analytics on AWS," you will learn how to store, manage, and analyze geospatial data effectively using various AWS services. This book provides insight into building geospatial data lakes, leveraging AWS databases, and applying best practices to derive insights from spatial data in the cloud. What this Book will help me do Design and manage geospatial data lakes on AWS leveraging S3 and other storage solutions. Analyze geospatial data using AWS services such as Athena and Redshift. Utilize machine learning models for geospatial data processing and analytics using SageMaker. Visualize geospatial data through services like Amazon QuickSight and OpenStreetMap integration. Avoid common pitfalls when managing geospatial data in the cloud. Author(s) Scott Bateman, Janahan Gnanachandran, and Jeff DeMuth bring their extensive experience in cloud computing and geospatial analytics to this book. With backgrounds in cloud architecture, data science, and geospatial applications, they aim to make complex topics accessible. Their collaborative approach ensures readers can practically apply concepts to real-world challenges. Who is it for? This book is ideal for GIS and data professionals, including developers, analysts, and scientists. It suits readers with a basic understanding of geographical concepts but no prior AWS experience. If you're aiming to enhance your cloud-based geospatial data management and analytics skills, this is the guide for you.

Serverless ETL and Analytics with AWS Glue

Discover how to harness AWS Glue for your ETL and data analysis workflows with "Serverless ETL and Analytics with AWS Glue." This comprehensive guide introduces readers to the capabilities of AWS Glue, from building data lakes to performing advanced ETL tasks, allowing you to create efficient, secure, and scalable data pipelines with serverless technology. What this Book will help me do Understand and utilize various AWS Glue features for data lake and ETL pipeline creation. Leverage AWS Glue Studio and DataBrew for intuitive data preparation workflows. Implement effective storage optimization techniques for enhanced data analytics. Apply robust data security measures, including encryption and access control, to protect data. Integrate AWS Glue with machine learning tools like SageMaker to build intelligent models. Author(s) The authors of this book include experts across the fields of data engineering and AWS technologies. With backgrounds in data analytics, software development, and cloud architecture, they bring a depth of practical experience. Their approach combines hands-on tutorials with conceptual clarity, ensuring a blend of foundational knowledge and actionable insights. Who is it for? This book is designed for ETL developers, data engineers, and data analysts who are familiar with data management concepts and want to extend their skills into serverless cloud solutions. If you're looking to master AWS Glue for building scalable and efficient ETL pipelines or are transitioning existing systems to the cloud, this book is ideal for you.

Data Science on AWS

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more