talk-data.com talk-data.com

Topic

Terraform

infrastructure_as_code cloud devops

2

tagged

Activity Trend

13 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Airflow Summit 2020 ×

At Nielsen Digital we have been moving our ETLs to containerized environments managed by Kubernetes. We have successfully transferred some of our ETLs to this environment in production. In order to do this we used the following technologies: Helm to easily deploy Airflow on to Kubernetes; Airflow’s Kubernetes Executor to take full advantage Kubernetes features; and Airflow’s Kubernetes Pod Operator in order to execute our containerized Tasks within our DAGs. To automate a lot of the deployment process we also used Terraform. Lastly, Kubernetes features were used to gain much more fine grained control of Airflows infrastructure. Join me in this talk to take an in depth look at how we used these technologies, why we used these technologies, and the results of using them so far. I will also briefly go over some features coming in Airflow 2.0 that we are considering to use in our workflows.

Scribd is migrating its data pipeline from an in house system to Airflow. It’s a one big giant data pipeline consisting of more than 1,500 tasks. In this talk, I would like to share couple best practices on setting up a cloud native Airflow deployment in AWS. For those who are interested in migrating a non-trivial data pipeline to Airflow, I will also share how Scribd plans and executes the migration. Here are some of the topics that will be covered: How to setup a highly available Airflow cluster in AWS using both ECS and EKS with Terraform. How to manage Airflow DAGs across multiple git repositories. How we manage Airflow variables using a custom Airflow Terraform provider. Best practices on monitoring multiple Airflow clusters with Datadog and Pagerduty. How to Airflow to make it feature parity with Scribd’s in house orchestration system. How to plan and execute non-trivial data pipeline migrations. We transcompiled internal DSL to Airflow DAG to simulate what a real run will look like to surface performance issues early in the process. How we fixed an Airflow performance bottleneck so our giant DAG can be properly rendered in Web UI. For detailed deep dives on some of topics mentioned above, please check out our blog post series at https://tech.scribd.com/tag/airflow-series/ [Slides] ( https://docs.google.com/presentation/d/e/2PACX-1vRb-iH5NX2d7m-rQ7WGc6XlRvRCADwXq2hdjRjRuJ5h7e9ybfoUA13ytxpHgx7JG815fIKEE-QKuRUV/pub?start=false&loop=false&delayms=3000 )