talk-data.com talk-data.com

Event

DataTalks.Club

2020-11-21 – 2025-11-28 Podcasts Visit website ↗

Activities tracked

201

DataTalks.Club - the place to talk about data!

Sessions & talks

Showing 101–125 of 201 · Newest first

Search within this event →

Product Owners in Data Science - Anna Hannemann

2022-11-11 Listen
podcast_episode
Anna Hannemann (METRO)

We talked about:

About Anna and METRO Anna’s background The importance of a technical background for data product owners What are product owners? Product owners vs product managers Anna’s work on recommender systems at METRO Expanding the data team Types of algorithms used for recommender systems What kind of knowledge and skills data product owners need to have Problems and ideas should come from the business How Anna handles all her responsibilities The process for starting work on new domains Product portfolio management ProductTank and Anna’s role in it Anna’s resource recommendations

Links:

Data Science for Business Book: https://www.amazon.de/-/en/Foster-Provost/dp/1449361323/ref=sr_1_1?keywords=data+science+for+business&qid=1666404807&qu=eyJxc2MiOiIxLjg3IiwicXNhIjoiMS41MiIsInFzcCI6IjEuNDYifQ%3D%3D&sr=8-1 Article on Data Science Products: https://www.linkedin.com/pulse/way-create-data-science-products-lessons-learnt-anna-hannemann-phd/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Building Data Science Practice - Andrey Shtylenko

2022-11-04 Listen
podcast_episode

We talked about:

Audience Poll Andrey’s background What data science practice is Best DS practice in a traditional company vs IT-centric companies Getting started with building data science practice (finding out who you report to) Who the initiative comes from Finding out what kind of problems you will be solving (Centralized approach) Moving to a semi-decentralized approach Resources to learn about data science practice Pivoting from the role of a software engineer to data scientist The most impactful realization from data science practice Advice for individual growth Finding Andrey online

Links: 

Data Teams book: https://www.amazon.com/Data-Teams-Management-Successful-Data-Focused/dp/1484262271/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Large-Scale Entity Resolution - Sonal Goyal

2022-10-28 Listen
podcast_episode

We talked about:

Sonal’s background How the idea for Zingg came about What Zingg is The difference between entity resolution and identity resolution How duplicate detection relates to entity resolution How Sonal decided to start working on Zingg How Zingg works What Zingg runs on Switching from consultancy to working on a new open source solution Why Zingg is open source Open source licensing Working on Zingg initially vs now Zingg’s current and future team Sonal’s biggest current challenge Avoiding problems with entity/identity resolution through database design Identity resolution vs basic joins, data fusions, and fuzzy joins Deterministic matching vs probabilistic machine learning Identity and entity resolution applications for fraud detection Graph algorithms vs classic ML in entity resolution Identity resolution success stories What Sonal would do differently given the chance to start over with Zingg Advice for those seeking to realize their own solution to a data problem Reading suggestion from Sonal Conclusion

Links:

Open-Source Spotlight demo "Zingg":https://www.youtube.com/watch?v=zOabyZxN9b0 Creative Selection: Inside Apple's Design Process During the Golden Age of Steve Jobs book: https://www.amazon.com/Creative-Selection-Inside-Apples-Process/dp/1250194466

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

From Data Science to DataOps - Tomasz Hinc

2022-10-21 Listen
podcast_episode

We talked about:

Tomasz’s background What Tomasz did before DataOps (Data Science) Why Tomasz made the transition from Data science to DataOps What is DataOps? How is DataOps related to infrastructure? How Tomasz learned the skills necessary to become DataOps Becoming comfortable with terminal The overlap between DataOps and Data Engineering Suitable/useful skills for DataOps Minimal operational skills for DataOps Similarities between DataOps and Data Science Managers Tomasz’s interesting projects Confidence in results and avoiding going too deep with edge cases Conclusion

Links:

Terminal setup video, 19 minutes long: https://www.youtube.com/watch?v=D2PSsnqgBiw Command line videos, one and a half hour to become somewhat comfy with the terminal: https://www.youtube.com/playlist?list=PLIhvC56v63IKioClkSNDjW7iz-6TFvLwS Course from MIT talking about just that (command line, git, storing secrets): https://missing.csail.mit.edu/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Science Career Development - Katie Bauer

2022-10-14 Listen
podcast_episode

We talked about:

Katie’s background What is a data scientist? What is a data science manager? Quality of the craft How data leaders promote career growth Supporting senior data professionals Choosing the IC route vs the management route Managing junior data professionals Talking to senior stakeholders and PMs as a junior The importance of hiring juniors What skills do data scientist managers need to get hired? How juniors that are just starting out can set themselves apart from the competition Asking senior colleagues for help and the rubber duck channel The challenges of the head of data Conclusion

Links:

Jobs at Gloss Genius: https://boards.greenhouse.io/glossgenius

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

From Testing Phones to Managing NLP Projects - Alvaro Navas Peire

2022-10-07 Listen
podcast_episode

We talked about:

Alvaro’s background Working as a QA (Quality Assurance) engineer Transitioning from QA to Machine Learning Gathering knowledge about ML field Searching for an ML job (improving soft skills and CV) Data science interview skills Zoomcamp projects Zoomcamp project deployment How to not undersell yourself during interviews Alvaro’s experience with interviews during his transition Alvaro’s Zoomcamp notes Alvaro’s coach The importance of mathematical knowledge to a transition into ML Preparing for technical interviews Alvaro’s typical workday Alvaro’s team’s tech stack The importance of a technical background to transitioning into ML

Links:

Alvaro's CV: https://www.dropbox.com/s/89hkt3ug0toqa2n/CV%20nou%20-%20angl%C3%A8s.pdf?dl=0 Github profile: https://github.com/ziritrion LinkedIn profile: https://www.linkedin.com/in/alvaronavas/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcampJoin 

DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Responsible and Explainable AI - Supreet Kaur

2022-09-30 Listen
podcast_episode
Supreet Kaur (DataBuzz)

We talked about:

Supreet’s background Responsible AI Example of explainable AI Responsible AI vs explainable AI Explainable AI tools and frameworks (glass box approach) Checking for bias in data and handling personal data Understanding whether your company needs certain type of data Data quality checks and automation Responsibility vs profitability The human touch in AI The trade-off between model complexity and explainability Is completely automated AI out of the question? Detecting model drift and overfitting How Supreet became interested in explainable AI Trustworthy AI Reliability vs fairness Bias indicators The future of explainable AI About DataBuzz The diversity of data science roles Ethics in data science Conclusion

Links:

LinkedIn: https://www.linkedin.com/in/supreet-kaur1995/ Databuzz page: https://www.linkedin.com/company/databuzz-club/ Medium Blog Page: https://medium.com/@supreetkaur_66831

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Building Data Science Practice - Andrey Shtylenko

2022-09-30 Listen
podcast_episode

We talked about:

Audience Poll Andrey’s background What data science practice is Best DS practice in a traditional company vs IT-centric companies Getting started with building data science practice (finding out who you report to) Who the initiative comes from Finding out what kind of problems you will be solving (Centralized approach) Moving to a semi-decentralized approach Resources to learn about data science practice Pivoting from the role of a software engineer to data scientist The most impactful realization from data science practice Advice for individual growth Finding Andrey online

Links:

Data Teams book: https://www.amazon.com/Data-Teams-Management-Successful-Data-Focused/dp/1484262271/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

No episode this week

2022-09-23 Listen
podcast_episode

Have a great weekend!

Leading Data Research - David Bader

2022-09-16 Listen
podcast_episode
David A. Bader (New Jersey Institute of Technology (NJIT))

We talked about:

David’s background A day in the life of a professor David’s current projects Starting a school The different types of professors David’s recent papers Similarities and differences between research labs and startups Finding (or creating) good datasets David’s lab Balancing research and teaching as a professor David’s most rewarding research project David’s most underrated research project David’s virtual data science seminars on YouTube Teaching at universities without doing research Staying up-to-date in research David’s favorite conferences Selecting topics for research Convincing students to stay in academia and competing with industry Finding David online

Links: 

David A. Bader: https://davidbader.net/ NJIT Institute for Data Science: https://datascience.njit.edu/ Arkouda: https://github.com/Bears-R-Us/arkouda NJIT Data Science YouTube Channel: https://www.youtube.com/c/NJITInstituteforDataScience

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Dataset Creation and Curation - Christiaan Swart

2022-09-09 Listen
podcast_episode
Christiaan Swart (Comtura)

We talked about:

Christiaan’s background Usual ways of collecting and curating data Getting the buy-in from experts and executives Starting an annotation booklet Pre-labeling Dataset collection Human level baseline and feedback Using the annotation booklet to boost annotation productivity Putting yourself in the shoes of annotators (and measuring performance) Active learning Distance supervision Weak labeling Dataset collection in career positioning and project portfolios IPython widgets GDPR compliance and non-English NLP Finding Christiaan online

Links:

My personal blog: https://useml.net/ Comtura, my company: https://comtura.ai/ LI: https://www.linkedin.com/in/christiaan-swart-51a68967/ Twitter: https://twitter.com/swartchris8/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Mesh 101 - Zhamak Dehghani

2022-09-02 Listen
podcast_episode

We talked about:

Zhamak’s background What is Data Mesh? Domain ownership Determining what to optimize for with Data Mesh Decentralization Data as a product Self-serve data platforms Data governance Understanding Data Mesh Adopting Data Mesh Resources on implementing Data Mesh

Links:

Free 30-day code from O'Reilly: https://learning.oreilly.com/get-learning/?code=DATATALKS22 Data Mesh book: https://learning.oreilly.com/library/view/data-mesh/9781492092384/ LinkedIn: https://www.linkedin.com/in/zhamak-dehghani

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Growing Data Engineering Team in a Scale-Up - Mehdi OUAZZA

2022-08-26 Listen
podcast_episode

We talked about:

Mehdi’s background The difference between startup, scale-up and enterprise Hypergrowth Data platform engineers in a scale-up environment What a data platform is and who builds it Managing the fast pace of a scale-up while ensuring personal growth Should a senior data person consider a scale-up or an enterprise? Should a junior data person consider a scale-up or an enterprise? Sourcing talent for hyper-growth companies and developing a community culture Generating content and getting feedback Generalization vs specialization for data engineers in a scale-up The ratio of work between platform building and use case pipelines Being proactive in order to progress to mid or senior level Caps and bass guitars MehdiO DataTV and DataCreators.Club (Mehdi’s YouTube Channel and podcast)

Links:

Mehdi's YouTube channel: https://www.youtube.com/channel/UCiZxJB0xWfPBE2omVZeWPpQ Mehdi's Linkedin:  https://linkedin.com/in/mehd-io/ Mehdi's Medium Blog: https://medium.com/@mehdio Mehdi's data creators club: https://datacreators.club/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Lessons Learned About Data & AI at Enterprises - Alexander Hendorf

2022-08-19 Listen
podcast_episode
Alexander Hendorf (Königsweg)

We talked about:

Alexander’s background The role of Partner at Königsweg Being part of the data and AI community How Alexander became chair at PyData Alexander’s many talks and advice on giving them Explaining AI to managers Why being able to explain machine learning to managers is important The experimentational nature of AI and why it’s not a cure-all Innovation requires patience Convincing managers not to use AI or ML when there are better (simpler) solutions The role of MLOps in enterprises Thinking about the mid- and long-term when considering solutions Finding Alexander online

Links: 

Alexander's Twitter: https://twitter.com/hendorf Alexander's LinkedIn: https://www.linkedin.com/in/hendorf/ Königsweg: https://www.koenigsweg.com PyData Südwest: https://www.meetup.com/pydata-suedwest/ PyData Frankfurt: https://www.meetup.com/pydata-frankfurt/ PyConDE & PyData Berlin: https://pycon.de

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

MLOps Architect - Danny Leybzon

2022-08-12 Listen
podcast_episode
Danny Leybzon (WhyLabs)

We talked about:

Danny’s background What an MLOps Architect does The popularity of MLOps Architect as a role Convincing an employer that you can wear many different hats Interviewing for the role of an MLOps Architect How Danny prioritizes work with data scientists Coming to WhyLabs when you’ve already got something in production vs nothing in production Market awareness regarding the importance of model monitoring How Danny (WhyLabs) chooses tools ONNX Common trends in tooling setups The most rewarding thing for Danny in ML and data science Danny’s secret for staying sane while wearing so many different hats T-shaped specialist, E-shaped specialist, and the horizontal line The importance of background for the role of an MLOps Architect Key differences for WhyLogs free vs paid Conclusion and where to find Danny online

Links:

Matt Turck: https://mattturck.com/data2021/ AI Observability Platform: https://whylabs.ai/observability Danny's LinkedIn: https://www.linkedin.com/in/dleybz/ Whylabs' website: https://whylabs.ai/ AI Infrastructure Alliance: https://ai-infrastructure.org/

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Decoding Data Science Job Descriptions - Tereza Iofciu

2022-08-05 Listen
podcast_episode

We talked about:

DataTalks.Club intro Tereza’s background Working as a coach Identifying the mismatches between your needs and that of a company How to avoid misalignments Considering what’s mentioned in the job description, what isn’t, and why Diversity and culture of a company Lack of a salary in the job description Way of doing research about the company where you will potentially work How to avoid a mismatch with a company other than learning from your mistakes Before data, during data, after data (a company’s data maturity level) The company’s tech stack Finding Tereza online

Links: 

Decoding Data Science Job Descriptions (talk): https://www.youtube.com/watch?v=WAs9vSNTza8 Talk at ConnectForward: https://www.youtube.com/watch?v=WAs9vSNTza8 Slides: https://www.slideshare.net/terezaif/decoding-data-science-job-descriptions-250687704 Talk at DataLift: https://www.youtube.com/watch?v=pCtQ0szJiLA Slides: https://www.slideshare.net/terezaif/lessons-learned-from-hiring-and-retaining-data-practitioners

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Science for Social Impact - Christine Cepelak

2022-07-29 Listen
podcast_episode

We talked about:

Christine’s Background Private sector vs Public sector Public policy The challenges of being a community organizer How public policy relates to political science Programs that teach data science for public policy Data science for public policy vs regular data science The importance of ethical data science in public policy How data science in social impact project differs from other projects Other resources to learn about data science for public policy Challenges with getting data in data science for public policy The problems with accessing public datasets about recycling Christine’s potential projects after Master’s degree Gender inequality in STEM fields Corporate responsibility and why organizations need social impact data scientists What you need to start making a social impact with data science 80,000 hours Other use cases for public policy data science Coffee, Ethics & AI Finding Christine online

Links:

Explore some Data Science for Social Good projects: http://www.dssgfellowship.org/projects/ Bi-weekly Ethics in AI Coffee Chat: https://www.meetup.com/coffee-ethics-ai/ Make a Social Impact with your Job: https://tinyurl.com/80khours Course in Data Ethics: https://ethics.fast.ai/ Data Science for Social Good Berlin: https://dssg-berlin.org/ CorrelAid: https://correlaid.org/ DataKind: https://www.datakind.org/ Christine's LinkedIn: https://www.linkedin.com/in/christinecepelak/ Christine's Twitter: https://twitter.com/CLcep 

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Hiring Data Science Talent - Olga Ivina

2022-07-22 Listen
podcast_episode

We talked about:

Olga’s career journey Hiring data scientists now vs 7 years ago The two qualities of an excellent data scientist What makes Alexey do this podcast How Alexey get the latest information on data science How Olga checks a candidate’s technical skills How to make an answer stand out (showing your depth of knowledge) A strong mathematical background vs a strong engineering background When Auto ML will replace the need to have data scientists Should data scientists transition into management? (the importance of communication in an organization) Switching from a data analyst role to a data scientist Attracting female talent in data science Changing a job description to find talent Long gaps in the CV Eierlegende Wollmilchsau

Links:

Olga's LinkedIn: https://www.linkedin.com/in/olgaivina/  Olga's Twitter: https://twitter.com/olgaivina

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

From Open-Source Maintainer to Founder - Will McGugan

2022-07-15 Listen
podcast_episode
Will McGugan (Textualize)

We talked about: 

Will’s background Will’s open source projects S3Fs and PyFile systems Inspiration for open source projects Will as a freelancer Starting a company from a tweet (Rich and Textual) Building in public (Will’s approach to social media) The workforce and roadmap of Textualize.io The importance of working on open source for Textualize employees The workflow of and contributions to Textualize Getting your first thousand GitHub Stars (going viral) Suggestions for those who wish to start in the open-source space Finding Will online

Links: 

Twitter: https://twitter.com/willmcgugan Textualize website: https://www.textualize.io/ Textualize GitHub: https://github.com/textualize

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Designing a Data Science Organization - Lisa Cohen

2022-07-08 Listen
podcast_episode

We talked about:

Lisa’s background Centralized org vs decentralized org Hybrid org (centralized/decentralized) Reporting your results in a data organization Planning in a data organization Having all the moving parts work towards the same goals Which approach Twitter follows (centralized vs decentralized) Pros and cons of a decentralized approach Pros and cons of a centralized approach Finding a common language with all the functions of an org Finding the right approach for companies that want to implement data science How many data scientists does a company need? Who do data scientists report huge findings to? The importance of partnering closely with other functions of the org The role of Product Managers in the org and across functions Who does analytics at Twitter (analysts vs data scientists) The importance of goals, objectives and key results Conflicting objectives The importance of research Finding Lisa online

Links:

LinkedIn: https://www.linkedin.com/in/cohenlisa/ Twitter: https://twitter.com/lisafeig Medium: https://medium.com/@lisa_cohen Lisa Cohen's YouTube videos: https://www.youtube.com/playlist?list=PLRhmnnfr2bX7-GAPHzvfUeIEt2iYCbI3w

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Developer Advocacy Engineer for Open-Source - Merve Noyan

2022-07-01 Listen
podcast_episode
Merve Noyan (Hugging Face)

We talked about:

Merve’s background Merve’s first contributions to open source What Merve currently does at Hugging Face (Hub, Spaces) What is means to be a developer advocacy engineer at Hugging Face The best way to get open source experience (Google Summer of Code, Hacktoberfest, and sprints) The peculiarities of hiring as it relates to code contributions Best resources to learn about NLP besides Hugging Face Good first projects for NLP The most important topics in NLP right now NLP ML Engineer vs NLP Data Scientist Project recommendations and other advice to catch the eye of recruiters Merve on Twitch and her podcast Finding Merve online Merve and Mario Kart

Links:

Hugging Face Course: https://hf.co/course Natural Language Processing in TensorFlow: https://www.coursera.org/learn/natural-language-processing-tensorflow Github ML Poetry: https://github.com/merveenoyan/ML-poetry Tackling multiple tasks with a single visual language model: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model Hugging Face big science/TOpp: https://huggingface.co/bigscience/T0pp Pathways Language Model (PaLM) blog: https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Scientists at Work - Mısra Turp

2022-06-24 Listen
podcast_episode

We talked about:

Misra’s background What data scientists do Consultant data scientists vs in-house data scientists (and freelancers) Expectations for data scientists The importance of keeping up to date with AI developments (FOMA) How does DALL·E 2 work and should you care? Going to conferences to stay up to date The most pressing issue for data scientists Fighting FOMA and imposter syndrome Knowing when you have enough knowledge of a framework The “best” type of data scientist Being a generalist vs a specialist Advice for entry-level data entering an oversaturated market Catching the eye of big AI companies Choosing a project for your portfolio The importance of having a Ph.D. or Master’s degree in data science Finding Misra online

Links:

Mısra's YouTube channel: https://www.youtube.com/channel/UCpNUYWW0kiqyh0j5Qy3aU7w Twitter: https://twitter.com/misraturp Hands-on Data Science: Complete Your First Portfolio Project: https://www.soyouwanttobeadatascientist.com/hods 

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.htm

Freelancing and Consulting with Data Engineering - Adrian Brudaru

2022-06-17 Listen
podcast_episode

We talked about:

Adrian’s background Freelancing vs Employment Risk and occupancy rate in freelancing The scariest part of freelancing Adrian’s first projects Freelancing 5 years later Pay rates in freelancing Acquiring skills while freelancing Working with recruitment agencies and networking Looking for projects and getting clients Freelancing vs consulting Clarity in clients’ expectations (scope of work) Building your network Freelancing platforms Adrian’s data loading prototype Going from freelancing to making your own product (and other investments) The usefulness of a portfolio Introverts in freelancing Is it possible to work for 3 months a year in freelancing? Choosing projects and skill-building strategy (focusing on interests) Freelancing in Berlin Clients’ expectations for freelancers vs employees Working with more than one client at the same time Adrian’s freelance cooperative on Slack Other advice for novice freelancers (networking) Finding Adrian online

Links:

Github: https://github.com/scale-vector Slack Community: https://join.slack.com/t/berlindatacol-szn7050/shared_invite/zt-19dp8msp0-pP4Av3_fVFBbsdrzPROEAg

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Getting a Data Engineering Job (Summary and Q&A) - Jeff Katz

2022-06-10 Listen
podcast_episode
Jeff Katz (JigsawLabs.io)

We talked about:

Summary of “Getting a Data Engineering Job” webinar Python and engineering skills  Interview process Behavioral interviews Technical interviews Learning Python and SQL from scratch Is having non-coding experience a disadvantage? Analyst or engineer? Do you need certificates? Do I need a master’s degree? Fully remote data engineering jobs Should I include teaching on my resume? Object-oriented programming for data engineering Python vs Java/Scala SQL and Python technical interview questions GCP certificates Is commercial experience really necessary? From sales to engineering Solution engineers Wrapping up

Links:

Getting a Data Engineering Job (webinar): https://www.youtube.com/watch?v=yvEWG-S1F_M The Flask Mega-Tutorial Part I - Hello, World! blog: https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world Mode SQL Tutorial: https://mode.com/sql-tutorial/

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Using Data for Asteroid Mining - Daynan Crull

2022-06-03 Listen
podcast_episode

We talked about:

Daynan’s background Astronomy vs cosmology Applications of data science and machine learning in astronomy Determining signal vs noise What the data looks like in astronomy Determining the features of an object in space Ground truth for space objects Why water is an important resource in the space economy Other useful resources that can be found in asteroids Sources of asteroids The data team at an asteroid mining company Open datasets for hobbyists Mission and hardware design for asteroid mining Partnerships and hires

Links: 

LinkedIn: https://www.linkedin.com/in/daynan/ We're looking for a Sr Data Engineer: https://boards.eu.greenhouse.io/karmanplus/jobs/4027128101?gh_jid=4027128101 Minor Planet Center: https://minorplanetcenter.net/- JPL Horizons has a nice set of APIs for accessing data related to small bodies (including asteroids): https://ssd.jpl.nasa.gov/api.html ESA has NEODyS: https://newton.spacedys.com/neodys   IRSA catalog that contains image and catalog data related to the WISE/NEOWISE data (and other infrared platforms): https://irsa.ipac.caltech.edu/frontpage/ NASA also has an archive of data collected from their various missions, including a node related to small bodies: https://pds-smallbodies.astro.umd.edu/ Sub-node directly related to asteroids: https://sbn.psi.edu/pds/ Size, Mass, and Density of Asteroids (SiMDA) is a nice catalog of observed asteroid attributes (and an indication of how small our sample size is!): https://astro.kretlow.de/?SiMDA The source survey data, several are useful for asteroids: Pan-STARRS (https://outerspace.stsci.edu/display/PANSTARRS)

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html