talk-data.com talk-data.com

Allison Wang

Speaker

Allison Wang

4

talks

Staff Software Engineer Databricks

Allison is a software engineer at Databricks, working on Spark SQL and PySpark. She holds a Bachelor’s degree in Computer Science from Carnegie Mellon University.

Bio from: Databricks DATA + AI Summit 2023

Filter by Event / Source

Talks & appearances

4 activities · Newest first

Search activities →

PySpark’s Arrow-based Python UDFs open the door to dramatically faster data processing by avoiding expensive serialization overhead. At the same time, Polars, a high-performance DataFrame library built on Rust, offers zero-copy interoperability with Apache Arrow. This talk shows how combining these two technologies unlocks new performance gains: writing Arrow UDFs with Polars in PySpark can deliver performance speedups compared to Python UDFs. Attendees will learn how Arrow UDFs work in PySpark, how it can be used with other data processing libraries, and how to apply this approach to real-world Spark pipelines for faster, more efficient workloads.

lightning_talk
with DB Tsai (Databricks) , Jules S. Damji (Anyscale Inc) , Allison Wang (Databricks)

Join us for an interactive Ask Me Anything (AMA) session on the latest advancements in Apache Spark 4, including Spark Connect — the new client-server architecture enabling seamless integration with IDEs, notebooks and custom applications. Learn about performance improvements, enhanced APIs and best practices for leveraging Spark’s next-generation features. Whether you're a data engineer, Spark developer or big data enthusiast, bring your questions on architecture, real-world use cases and how these innovations can optimize your workflows. Don’t miss this chance to dive deep into the future of distributed computing with Spark!

Bridging Big Data and AI: Empowering PySpark With Lance Format for Multi-Modal AI Data Pipelines

PySpark has long been a cornerstone of big data processing, excelling in data preparation, analytics and machine learning tasks within traditional data lakes. However, the rise of multimodal AI and vector search introduces challenges beyond its capabilities. Spark’s new Python data source API enables integration with emerging AI data lakes built on the multi-modal Lance format. Lance delivers unparalleled value with its zero-copy schema evolution capability and robust support for large record-size data (e.g., images, tensors, embeddings, etc), simplifying multimodal data storage. Its advanced indexing for semantic and full-text search, combined with rapid random access, enables high-performance AI data analytics to the level of SQL. By unifying PySpark's robust processing capabilities with Lance's AI-optimized storage, data engineers and scientists can efficiently manage and analyze the diverse data types required for cutting-edge AI applications within a familiar big data framework.

The English SDK for Apache Spark™

In the fast-paced world of data science and AI, we will explore how large language models (LLMs) can elevate the development process of Apache Spark applications.

We'll demonstrate how LLMs can simplify SQL query creation, data ingestion, and DataFrame transformations, leading to faster development and clearer code that's easier to review and understand. We'll also show how LLMs can assist in creating visualizations and clarifying data insights, making complex data easy to understand.

Furthermore, we'll discuss how LLMs can be used to create user-defined data sources and functions, offering a higher level of adaptability in Apache Spark applications.

Our session, filled with practical examples, highlights the innovative role of LLMs in the realm of Apache Spark development. We invite you to join us in this exploration of how these advanced language models can drive innovation and boost efficiency in the sphere of data science and AI.

Talk by: Gengliang Wang and Allison Wang

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc