talk-data.com talk-data.com

Topic

Analytics Engineering

data_modeling analytics_engineering business_intelligence analytics sql

4

tagged

Activity Trend

21 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Dumky de Wilde ×

Thomas in't Veld, founder of Tasman Analytics, joined Yuliia and Dumke to discuss why data projects fail: teams obsess over tooling while ignoring proper data modeling and business alignment. Drawing from building analytics for 70-80 companies, Thomas explains why the best data model never changes unless the business changes, and how his team acts as "data therapists" forcing marketing and sales to agree on fundamental definitions. He shares his controversial take that data modeling sits more in analysis than engineering. Another hot take: analytics engineering is merging back into data engineering, and why showing off your DAG at meetups completely misses the point - business understanding is the critical differentiator, not your technology stack.

We're seeing the title "Analytics Engineer" continue to rise, and it's in large part due to individuals realizing that there's a name for the type of work they've found themselves doing more and more. In today's landscape, there's truly a need for someone with some Data Engineering chops with an eye towards business use cases. We were fortunate to have the one of the co-authors of The Fundamentals of Analytics Engineering, Dumky de Wilde, join us to discuss the ins and outs of this popular role! Listen in to hear more about the skills and responsibilities of this role, some fun analogies to help explain to your grandma what AE's do, and even tips for individuals in this role for how they can communicate the value and impact of their work to senior leadership! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Fundamentals of Analytics Engineering

Master the art and science of analytics engineering with 'Fundamentals of Analytics Engineering.' This book takes you on a comprehensive journey from understanding foundational concepts to implementing end-to-end analytics solutions. You'll gain not just theoretical knowledge but practical expertise in building scalable, robust data platforms to meet organizational needs. What this Book will help me do Design and implement effective data pipelines leveraging modern tools like Airbyte, BigQuery, and dbt. Adopt best practices for data modeling and schema design to enhance system performance and develop clearer data structures. Learn advanced techniques for ensuring data quality, governance, and observability in your data solutions. Master collaborative coding practices, including version control with Git and strategies for maintaining well-documented codebases. Automate and manage data workflows efficiently using CI/CD pipelines and workflow orchestrators. Author(s) Dumky De Wilde, alongside six co-authors-experienced professionals from various facets of the analytics field-delivers a cohesive exploration of analytics engineering. The authors blend their expertise in software development, data analysis, and engineering to offer actionable advice and insights. Their approachable ethos makes complex concepts understandable, promoting educational learning. Who is it for? This book is a perfect fit for data analysts and engineers curious about transitioning into analytics engineering. Aspiring professionals as well as seasoned analytics engineers looking to deepen their understanding of modern practices will find guidance. It's tailored for individuals aiming to boost their career trajectory in data engineering roles, addressing fundamental to advanced topics.