talk-data.com talk-data.com

Topic

data-science-tasks

794

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Statistical Shape Analysis, 2nd Edition

A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Statistical Shape Analysis: with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis .

A Primer on Nonparametric Analysis, Volume I

Nonparametric statistics provide a scientific methodology for cases where customary statistics are not applicable. Nonparametric statistics are used when the requirements for parametric analysis fail, such as when data are not normally distributed or the sample size is too small. The method provides an alternative for such cases and is often nearly as powerful as parametric statistics. Another advantage of nonparametric statistics is that it offers analytical methods that are not available otherwise. Nonparametric methods are intuitive and simple to comprehend, which helps researchers in the social sciences understand the methods in spite of lacking mathematical rigor needed in analytical methods customarily used in science. This book is a methodology book and bypasses theoretical proofs while providing comprehensive explanations of the logic behind the methods and ample examples, which are all solved using direct computations as well as by using Stata. It is arranged into two integrated volumes. Although each volume, and for that matter each chapter, can be used separately, it is advisable to read as much of both volumes as possible; because familiarity with what is applicable for different problems will enhance capabilities.

A Primer on Nonparametric Analysis, Volume II

Nonparametric statistics provide a scientific methodology for cases where customary statistics are not applicable. Nonparametric statistics are used when the requirements for parametric analysis fail, such as when data are not normally distributed or the sample size is too small. The method provides an alternative for such cases and is often nearly as powerful as parametric statistics. Another advantage of nonparametric statistics is that it offers analytical methods that are not available otherwise. Nonparametric methods are intuitive and simple to comprehend, which helps researchers in the social sciences understand the methods in spite of lacking mathematical rigor needed in analytical methods customarily used in science. This book is a methodology book and bypasses theoretical proofs while providing comprehensive explanations of the logic behind the methods and ample examples, which are all solved using direct computations as well as by using Stata. It is arranged into two integrated volumes. Although each volume, and for that matter each chapter, can be used separately, it is advisable to read as much of both volumes as possible; because familiarity with what is applicable for different problems will enhance capabilities.

Demand Forecasting for Managers

Most decisions and plans in a firm require a forecast. Not matching supply with demand can make or break any business, and that's why forecasting is so invaluable. Forecasting can appear as a frightening topic with many arcane equations to master. For this reason, the authors start out from the very basics and provide a non-technical overview of common forecasting techniques as well as organizational aspects of creating a robust forecasting process. The book also discusses how to measure forecast accuracy to hold people accountable and guide continuous improvement. This book does not require prior knowledge of higher mathematics, statistics, or operations research. It is designed to serve as a first introduction to the non-expert, such as a manager overseeing a forecasting group, or an MBA student who needs to be familiar with the broad outlines of forecasting without specializing in it.

Statistical Analysis with Excel For Dummies, 4th Edition

Learn all of Excel's statistical tools Test your hypotheses and draw conclusions Use Excel to give meaning to your data Use Excel to interpret stats Statistical analysis with Excel is incredibly useful—and this book shows you that it can be easy, too! You'll discover how to use Excel's perfectly designed tools to analyze and understand data, predict trends, make decisions, and more. Tackle the technical aspects of Excel and start using them to interpret your data! Inside... Covers Excel 2016 for Windows® & Mac® users Check out new Excel stuff Make sense of worksheets Create shortcuts Tool around with analysis Use Quick Statistics Graph your data Work with probability Handle random variables

Working with Text

What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining. Introduces text analysis and text mining tools Provides a comprehensive overview of costs and benefits Introduces the topic, making it accessible to a general audience in a variety of fields, including examples from biology, chemistry, sociology, and criminology

Excel Sales Forecasting For Dummies, 2nd Edition

Choose, manage, and present data Select the right forecasting method for your business Use moving averages and predict seasonal sales Create sales forecasts you can trust You don't need magic, luck, or an advanced math degree to develop reliable sales forecasts; you just need Excel and this book! This guide explains how forecasting works and how to use the tools built into Excel. You'll learn how to choose your data, set up tables, chart your baseline, to create both basic and advanced forecasts you can really use. Inside... Prevent common issues Why baselines matter How to organize your data Tips on setting up tables Working with pivot charts How to forecast seasonal sales revenue Forecasting with regression

Quantifying the User Experience, 2nd Edition

Quantifying the User Experience: Practical Statistics for User Research, Second Edition, provides practitioners and researchers with the information they need to confidently quantify, qualify, and justify their data. The book presents a practical guide on how to use statistics to solve common quantitative problems that arise in user research. It addresses questions users face every day, including, Is the current product more usable than our competition? Can we be sure at least 70% of users can complete the task on their first attempt? How long will it take users to purchase products on the website? This book provides a foundation for statistical theories and the best practices needed to apply them. The authors draw on decades of statistical literature from human factors, industrial engineering, and psychology, as well as their own published research, providing both concrete solutions (Excel formulas and links to their own web-calculators), along with an engaging discussion on the statistical reasons why tests work and how to effectively communicate results. Throughout this new edition, users will find updates on standardized usability questionnaires, a new chapter on general linear modeling (correlation, regression, and analysis of variance), with updated examples and case studies throughout. Completely updated to provide practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices Includes new and revised information on standardized usability questionnaires Includes a completely new chapter introducing correlation, regression, and analysis of variance Shows practitioners which test to use, why they work, and best practices for application, along with easy-to-use Excel formulas and web-calculators for analyzing data Recommends ways for researchers and practitioners to communicate results to stakeholders in plain English

Statistics, 3E

Statistics is a class that is required in many college majors, and it's an increasingly popular Advanced Placement high school course. In addition to math and technical students, many business and liberal arts students are required to take it as a fundamental component of their majors. A knowledge of statistical interpretation is vital for many careers. Idiot's Guides: Statistics explains the fundamental tenets in language anyone can understand. Content includes: - Calculating descriptive statistics - Measures of central tendency: mean, median, and mode - Probability - Variance analysis - Inferential statistics - Hypothesis testing - Organizing data into statistical charts and tables

Practical D3.js

Your indispensable guide to mastering the efficient use of D3.js in professional-standard data visualization projects. You will learn what data visualization is, how to work with it, and how to think like a D3.js expert, both practically and theoretically. Practical D3.js does not just show you how to use D3.js, it teaches you how to think like a data scientist and work with the data in the real world. In Part One, you will learn about theories behind data visualization. In Part Two, you will learn how to use D3.js to create the best charts and layouts. Uniquely, this book intertwines the technical details of D3.js with practical topics such as data journalism and the use of open government data. Written by leading data scientists Tarek Amr and Rayna Stamboliyska, this book is your guide to using D3.js in the real world -- add it to your library today. You Will Learn: How to think like a data scientist and present data in the best way What structure and design strategies you can use for compelling data visualization How to use data binding, animations and events, scales, and color pickers How to use shapes, path generators, arcs and polygons Who This Book is For: This book is for anyone who wants to learn to master the use of D3.js in a practical manner, while still learning the important theoretical aspects needed to enable them to work with their data in the best possible way.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2nd Edition

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications This updated and revised edition of the popular classic relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets?as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Theory and Methods of Statistics

Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource Serves as an excellent text for select master’s and PhD programs, as well as a professional reference Integrates numerous examples to illustrate advanced concepts Includes many probability inequalities useful for investigating convergence of statistical procedures

Applied Regression and Modeling

The book is divided into three parts – (1) prerequisite to regression analysis followed by a discussion on simple regression, (2) multiple regression analysis with applications, and (3) regression and modeling including the second order models, nonlinear regression, and interaction models in regressions. All these sections provide examples with complete computer analysis and instructions commonly used in modeling and analyzing these problems. The book deals with detailed analysis and interpretation of computer results. This will help readers to appreciate the power of computer in applying regression models. The readers will find that the understanding of computer results is critical to implementing regression and modeling in real world situation. The book is written for juniors, seniors and graduate students in business, MBAs, professional MBAs, and working people in business and industry. Managers, practitioners, professionals, quality professionals, quality engineers, and anyone involved in data analysis, business analytics, and quality and six sigma will find the book to be a valuable resource.

Understanding and Applying Basic Statistical Methods Using R

Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming.

Network Reliability

In Engineering theory and applications, we think and operate in terms of logics and models with some acceptable and reasonable assumptions. The present text is aimed at providing modelling and analysis techniques for the evaluation of reliability measures (2-terminal, all-terminal, k-terminal reliability) for systems whose structure can be described in the form of a probabilistic graph. Among the several approaches of network reliability evaluation, the multiple-variable-inversion sum-of-disjoint product approach finds a well-deserved niche as it provides the reliability or unreliability expression in a most efficient and compact manner. However, it does require an efficiently enumerated minimal inputs (minimal path, spanning tree, minimal k-trees, minimal cut, minimal global-cut, minimal k-cut) depending on the desired reliability. The present book covers these two aspects in detail through the descriptions of several algorithms devised by the ‘reliability fraternity’ and explained through solved examples to obtain and evaluate 2-terminal, k-terminal and all-terminal network reliability/unreliability measures and could be its USP. The accompanying web-based supplementary information containing modifiable Matlab® source code for the algorithms is another feature of this book. A very concerted effort has been made to keep the book ideally suitable for first course or even for a novice stepping into the area of network reliability. The mathematical treatment is kept as minimal as possible with an assumption on the readers’ side that they have basic knowledge in graph theory, probabilities laws, Boolean laws and set theory.

Threat Forecasting

Drawing upon years of practical experience and using numerous examples and illustrative case studies, Threat Forecasting: Leveraging Big Data for Predictive Analysis discusses important topics, including the danger of using historic data as the basis for predicting future breaches, how to use security intelligence as a tool to develop threat forecasting techniques, and how to use threat data visualization techniques and threat simulation tools. Readers will gain valuable security insights into unstructured big data, along with tactics on how to use the data to their advantage to reduce risk. Presents case studies and actual data to demonstrate threat data visualization techniques and threat simulation tools Explores the usage of kill chain modelling to inform actionable security intelligence Demonstrates a methodology that can be used to create a full threat forecast analysis for enterprise networks of any size

Regression Analysis Microsoft® Excel®

This is today’s most complete guide to regression analysis with Microsoft® Excel for any business analytics or research task. Drawing on 25 years of advanced statistical experience, Microsoft MVP Conrad Carlberg shows how to use Excel’s regression-related worksheet functions to perform a wide spectrum of practical analyses. Carlberg clearly explains all the theory you’ll need to avoid mistakes, understand what your regressions are really doing, and evaluate analyses performed by others. From simple correlations and t-tests through multiple analysis of covariance, Carlberg offers hands-on, step-by-step walkthroughs using meaningful examples. He discusses the consequences of using each option and argument, points out idiosyncrasies and controversies associated with Excel’s regression functions, and shows how to use them reliably in fields ranging from medical research to financial analysis to operations. You don’t need expensive software or a doctorate in statistics to work with regression analyses. Microsoft Excel has all the tools you need—and this book has all the knowledge! Understand what regression analysis can and can’t do, and why Master regression-based functions built into all recent versions of Excel Work with correlation and simple regression Make the most of Excel’s improved LINEST() function Plan and perform multiple regression Distinguish the assumptions that matter from the ones that don’t Extend your analysis options by using regression instead of traditional analysis of variance Add covariates to your analysis to reduce bias and increase statistical power

A Course in Statistics with R

Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets

Regression for Economics, Second Edition

Regression analysis can be used to establish causal relationships between factors and the response variable. However, in order to be able to do so, economic theory must be used to provide the causal relationship and then regression analysis is applied to verify the validity of the theory. Regression analysis is the most commonly used analytical tool and can be understood without complex mathematics.  This book simplifies and demystifies regression analysis. All the examples are from economics and in almost all the cases, real data is used to show the application of the method. By limiting the use of mathematical symbols, the author enables a logical reader to learn regression, without shortchanging the subject.  The book is targeted to all business students and executives who need to understand the concept of regression for practical and professional purposes.

Good Charts

Dataviz—the new language of business A good visualization can communicate the nature and potential impact of information and ideas more powerfully than any other form of communication. For a long time “dataviz” was left to specialists—data scientists and professional designers. No longer. A new generation of tools and massive amounts of available data make it easy for anyone to create visualizations that communicate ideas far more effectively than generic spreadsheet charts ever could. What’s more, building good charts is quickly becoming a need-to-have skill for managers. If you’re not doing it, other managers are, and they’re getting noticed for it and getting credit for contributing to your company’s success. In Good Charts, dataviz maven Scott Berinato provides an essential guide to how visualization works and how to use this new language to impress and persuade. Dataviz today is where spreadsheets and word processors were in the early 1980s—on the cusp of changing how we work. Berinato lays out a system for thinking visually and building better charts through a process of talking, sketching, and prototyping. This book is much more than a set of static rules for making visualizations. It taps into both well-established and cutting-edge research in visual perception and neuroscience, as well as the emerging field of visualization science, to explore why good charts (and bad ones) create “feelings behind our eyes.” Along the way, Berinato also includes many engaging vignettes of dataviz pros, illustrating the ideas in practice. Good Charts will help you turn plain, uninspiring charts that merely present information into smart, effective visualizations that powerfully convey ideas.