talk-data.com talk-data.com

Topic

Data Management

data_governance data_quality metadata_management

7

tagged

Activity Trend

88 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Malcolm Hawker ×

In this episode of Data Unchained, we sit down with Malcolm Hawker, former Gartner analyst and Chief Data Officer at Profisee, to expose the real barriers to AI adoption. We explore why Master Data Management (MDM) is the foundation enterprises overlook, how decentralized systems and unstructured data derail governance, and why CDOs must evolve their role or risk irrelevance. This conversation challenges the myth of a single source of truth, breaks down the politics of data ownership, and offers a new vision for aligning data strategy with AI innovation.

AIReadiness #MasterDataManagement #DataGovernance #CDOInsights #EnterpriseAI #DataStrategy #UnstructuredData #DataInfrastructure #DigitalTransformation #AILeadership #DataUnchained #Profisee #MalcolmHawker #MollyPresley #TechInnovation

Cyberpunk by jiglr | https://soundcloud.com/jiglrmusic Music promoted by https://www.free-stock-music.com Creative Commons Attribution 3.0 Unported License https://creativecommons.org/licenses/by/3.0/deed.en_US Hosted on Acast. See acast.com/privacy for more information.

Malcolm Hawker describes MDM as a ‘must have’, while Juan Sequeda has described it as a ‘fancy integration’. As many CDO’s use MDM to solve decades-old problems, others turn to data catalogs as a natural starting point in their data journeys. This divide highlights the difficulty CDO’s face when prioritizing data initiatives: should they start with data management, or governance? Come hear two data experts debate:

- MDM Build vs. Buy
- Where should CDOs prioritize? MDM or Catalogs?
- What role do data products play in this choice?

It’s a widely held belief that MDM programs are big, disruptive, risky, and prone to failure. While these things may have been true for some companies in the past, providing meaningful business value through the launch (or relaunch) of an MDM program can be done in under 90 days – if you take the right approach. Come listen to former Gartner MDM analyst Malcolm Hawker as he describes the keys to launching an MDM program in under 12 weeks:

- Taking an MVP (minimum viable product) approach to your MDM program

- The importance of choosing the right MDM implementation style 

- How to gain executive alignment and sponsorship 

- Staffing / resourcing an MDM program for speed

- Other practical lessons from the MDM school of hard knocks 

If you’re having trouble getting an MDM program off the ground, or if your existing program is failing to deliver business value, then you won’t want to miss this presentation from the leading expert in the field of Master Data Management. 

Wait, I’m talking to a head of data management at a tech company? Why!? Well, today I'm joined by Malcolm Hawker to get his perspective around data products and what he’s seeing out in the wild as Head of Data Management at Profisee. Why Malcolm? Malcolm was a former head of product in prior roles, and for several years, I’ve enjoyed Malcolm’s musings on LinkedIn about the value of a product-oriented approach to ML and analytics. We had a chance to meet at CDOIQ in 2023 as well and he went on my “need to do an episode” list! 

According to Malcom, empathy is the secret to addressing key UX questions that ensure adoption and business value. He also emphasizes the need for data experts to develop business skills so that they're seen as equals by their customers. During our chat, Malcolm stresses the benefits of a product- and customer-centric approach to data products and what data professionals can learn approaching problem solving with a product orientation. 

Highlights/ Skip to:

Malcolm’s definition of a data product (2:10) Understanding your customers’ needs is the first step toward quantifying the benefits of your data product (6:34) How product makers can gain access to users to build more successful products (11:36)  Answering the UX question to get past the adoption stage and provide business value (16:03) Data experts must develop business expertise if they want to be seen as equals by potential customers (20:07) What people really mean by “data culture" (23:02) Malcolm’s data product journey and his changing perspective (32:05) Using empathy to provide a better UX in design and data (39:24) Avoiding the death of data science by becoming more product-driven (46:23) Where the majority of data professionals currently land on their view of product management for data products (48:15)

Quotes from Today’s Episode “My definition of a data product is something that is built by a data and analytics team that solves a specific customer problem that the customer would otherwise be willing to pay for. That’s it.” - Malcolm Hawker (3:42) “You need to observe how your customer uses data to make better decisions, optimize a business process, or to mitigate business risk. You need to know how your customers operate at a very, very intimate level, arguably, as well as they know how their business processes operate.” - Malcolm Hawker (7:36)

“So, be a problem solver. Be collaborative. Be somebody who is eager to help make your customers’ lives easier. You hear "no" when people think that you’re a burden. You start to hear more “yeses” when people think that you are actually invested in helping make their lives easier.” - Malcolm Hawker (12:42)

“We [data professionals] put data on a pedestal. We develop this mindset that the data matters more—as much or maybe even more than the business processes, and that is not true. We would not exist if it were not for the business. Hard stop.” - Malcolm Hawker (17:07)

“I hate to say it, I think a lot of this data stuff should kind of feel invisible in that way, too. It’s like this invisible ally that you’re not thinking about the dashboard; you just access the information as part of your natural workflow when you need insights on making a decision, or a status check that you’re on track with whatever your goal was. You’re not really going out of mode.” - Brian O’Neill (24:59)

“But you know, data people are basically librarians. We want to put things into classifications that are logical and work forwards and backwards, right? And in the product world, sometimes they just don’t, where you can have something be a product and be a material to a subsequent product.” - Malcolm Hawker (37:57)

“So, the broader point here is just more of a mindset shift. And you know, maybe these things aren’t necessarily a bad thing, but how do we become a little more product- and customer-driven so that we avoid situations where everybody thinks what we’re doing is a time waster?” - Malcolm Hawker (48:00)

Links Profisee: https://profisee.com/  LinkedIn: https://www.linkedin.com/in/malhawker/  CDO Matters: https://profisee.com/cdo-matters-live-with-malcolm-hawker/

Send us a text Part 2 : Malcolm Hawker, Head of Data Strategy for Profisee, and thought leader in the field of Master Data Management (MDM) and Data Governance. If you're an MDM zealot, let's go deep!

Show Notes: 00:32 The Head of Data Strategy02:00 Make it Easy, Accurate, and Scale05:48 What is Real vs Hype09:00 Profisee's Differentiator14:26 Reach out to Malcolm15:28 How to become a CDO18:50 Focusing on outcomes24:52 The end of the worldLinkedin: https://www.linkedin.com/in/malhawker Website: https://profisee.com/

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text Part 1 : Welcome Malcolm Hawker, Head of Data Strategy for Profisee, and thought leader in the field of Master Data Management (MDM) and Data Governance. If you're an MDM zealot, let's go deep.

Show Notes 01:28 Meet Malcolm Hawker06:33 MDM's future09:48 A unique view on data fabric14:07 The rise and fall of AOL19:46 The definition of MDM26:28 MDM reference architectureLinkedin: https://www.linkedin.com/in/malhawker Website: https://profisee.com/

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while  keeping it simple & fun. Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Summary The most complicated part of data engineering is the effort involved in making the raw data fit into the narrative of the business. Master Data Management (MDM) is the process of building consensus around what the information actually means in the context of the business and then shaping the data to match those semantics. In this episode Malcolm Hawker shares his years of experience working in this domain to explore the combination of technical and social skills that are necessary to make an MDM project successful both at the outset and over the long term.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Random data doesn’t do it — and production data is not safe (or legal) for developers to use. What if you could mimic your entire production database to create a realistic dataset with zero sensitive data? Tonic.ai does exactly that. With Tonic, you can generate fake data that looks, acts, and behaves like production because it’s made from production. Using universal data connectors and a flexible API, Tonic integrates seamlessly into your existing pipelines and allows you to shape and size your data to the scale, realism, and degree of privacy that you need. The platform offers advanced subsetting, secure de-identification, and ML-driven data synthesis to create targeted test data for all of your pre-production environments. Your newly mimicked datasets are safe to share with developers, QA, data scientists—heck, even distributed teams around the world. Shorten development cycles, eliminate the need for cumbersome data pipeline work, and mathematically guarantee the privacy of your data, with Tonic.ai. Data Engineering Podcast listeners can sign up for a free 2-week sandbox account, go to dataengineeringpodcast.com/tonic today to give it a try! RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure