talk-data.com talk-data.com

Event

Databricks DATA + AI Summit 2023

2026-01-11 YouTube Visit website ↗

Activities tracked

582

Sessions & talks

Showing 576–582 of 582 · Newest first

Search within this event →
Swedbank: Enterprise Analytics in Cloud

Swedbank: Enterprise Analytics in Cloud

2022-07-19 Watch
video

Swedbank is the largest bank in Sweden & third largest in Nordics. They have about 7-8M customers across retail, mortgage , and investment (pensions). One of the key drivers for the bank was to look at data across all silos and build analytics to drive their ML models - they couldn’t. That’s when Swedbank made a strategic decision to go to the cloud and make bets on Databricks, Immuta, and Azure.

-Enterprise analytics in cloud is an initiative to move Swedbanks on-premise Hadoop based data lake into the cloud to provide improved analytical capabilities at scale. The strategic goals of the “Analytics Data Lake” are: -Advanced analytics: Improve analytical capabilities in terms of functionality, reduce analytics time to market and better predictive modelling -A Catalyst for Sharing Data: Make data Visible, Accessible, Understandable, Linked, and Trusted Technical advancements: Future proof with ability to add new tools/libraries, support for 3rd party solutions for Deep Learning/AI

To achieve these goals, Swedbank had to migrate existing capabilities and application services to Azure Databricks & implement Immuta as its unified access control plane. A “data discovery” space was created for data scientists to be able to come & scan (new) data, develop, train & operationalise ML models. To meet these goals Swedbank requires dynamic and granular data access controls to both mitigate data exposure (due to compromised accounts, attackers monitoring a network, and other threats) while empowering users via self-service data discovery & analytics. Protection of sensitive data is key to enable Swedbank to support key financial services use cases.

The presentation will focus on this journey, calling out key technical challenges, learning & benefits observed.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Unlocking the power of data, AI & analytics: Amgen’s journey to the Lakehouse | Kerby Johnson

Unlocking the power of data, AI & analytics: Amgen’s journey to the Lakehouse | Kerby Johnson

2022-07-19 Watch
video

In this keynote, you will learn more about Amgen's data platform journey from data warehouse to data lakehouse. They’’ll discuss our decision process and the challenges they faced with legacy architectures, and how they designed and implemented a sustaining platform strategy with Databricks Lakehouse, accelerating their ability to democratize data to thousands of users.
Today, Amgen has implemented 400+ data science and analytics projects covering use cases like clinical trial optimization, supply chain management and commercial sales reporting, with more to come as they complete their digital transformation and unlock the power of data across the company.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

US Air Force: Safeguarding Personnel Data at Enterprise Scale

US Air Force: Safeguarding Personnel Data at Enterprise Scale

2022-07-19 Watch
video

The US Air Force VAULT platform is a cloud-native enterprise data platform designed to provide the Department of the Air Force (DAF) with a robust, interoperable, and secure data environment. The strategic goals of VAULT include:

  • Leading Data Culture - Increase data use and literacy to improve efficiency and effectiveness of decisions, readiness, mission operations, and cybersecurity.
  • A Catalyst for Sharing Data - Make data Visible, Accessible, Understandable, Linked, and Trusted (VAULT).
  • Driving Data Capabilities - Increase access to the right combination of state-of-the-art technologies needed to best utilize data.

To achieve these goals, the VAULT team created a self-service platform to onboard and extract, transform and load data, perform data analytics, machine learning and visualization, and data governance. Supporting over 50 tenants across NIPR and SIPR, adds complexity to maintaining data security while ensuring data can be shared and utilized for analytics. To meet these goals VAULT requires dynamic and granular data access controls to both mitigate data exposure (due to compromised accounts, attackers monitoring a network, and other threats) while empowering users via self-service analytics. Protection of sensitive data is key to enable VAULT to support key use cases such as personal readiness to optimally place Airmen trainees to meet production goals, increase readiness, and match trainees to their preferences.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Using Feast Feature Store with Apache Spark for Self-Served Data Sharing and Analysis for Streaming

Using Feast Feature Store with Apache Spark for Self-Served Data Sharing and Analysis for Streaming

2022-07-19 Watch
video

In this presentation we will talk about how we will use available NER based sensitive data detection methods, automated record of activity processing on top of spark and feast for collaborative intelligent analytics & governed data sharing. Information sharing is the key to successful business outcomes but it's complicated by sensitive information both user centric and business centric.

Our presentation is motivated by the need to share key KPIs, outcomes for health screening data collected from various surveys to improve care and assistance. In particular, collaborative information sharing was needed to help with health data management, early detection and prevention of disease KPIs. We will present a framework or an approach we have used for these purposes.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Vision AI—Animal Health Industry Use Cases Using Databricks on Azure

Vision AI—Animal Health Industry Use Cases Using Databricks on Azure

2022-07-19 Watch
video

Vision AI and Azure Cognitive services can be applied in a variety of ways for healthcare, especially for Animal Health. Animal Diagnostics market size is valued at over USD 4.5 Billion in 2020 and is expected to grow at CAGR of 8.5% from 2021 to 2027(Markets&Markets Study).

The overall livestock advanced monitoring market is expected to grow from USD 1.4 billion in 2021 to USD 2.3 billion by 2026; it is expected to grow at a CAGR of 10.4% during 2021–2026.

We hope to showcase various uses of AI/ML for the care of livestock and companion animals to help assist vets and farm-owners. Live demos will include real life case studies and forward looking applications of the same using reinforced learning techniques and services.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Private video

Private video

2022-07-19 Watch
video

This video is private.

Data + AI Summit 2022 Keynote from John Deere: Revolutionizing agriculture with AI

Data + AI Summit 2022 Keynote from John Deere: Revolutionizing agriculture with AI

2022-06-30 Watch
video

Hear Ganesh Jayaram, CIO of John Deere, talk about how the company is leveraging big data and AI to deliver ‘smart’ industrial solutions that are revolutionizing agriculture, driving sustainability and ultimately helping to feed the world. The John Deere Data Factory that is built upon the Databricks Lakehouse Platform is at the core of this innovation. It ingests 8 petabytes of data and trillions of records to give data teams fast, reliable access to standardized data sets to deliver over 3000 ML and analytics use cases that democratize data across John Deere, to deliver a culture of empowerment where data is everybody's responsibility.

Visit the Data + AI Summit at https://databricks.com/dataaisummit/