talk-data.com talk-data.com

Topic

statistics

505

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Forensic Analytics, 2nd Edition

Become the forensic analytics expert in your organization using effective and efficient data analysis tests to find anomalies, biases, and potential fraud—the updated new edition Forensic Analytics reviews the methods and techniques that forensic accountants can use to detect intentional and unintentional errors, fraud, and biases. This updated second edition shows accountants and auditors how analyzing their corporate or public sector data can highlight transactions, balances, or subsets of transactions or balances in need of attention. These tests are made up of a set of initial high-level overview tests followed by a series of more focused tests. These focused tests use a variety of quantitative methods including Benford’s Law, outlier detection, the detection of duplicates, a comparison to benchmarks, time-series methods, risk-scoring, and sometimes simply statistical logic. The tests in the new edition include the newly developed vector variation score that quantifies the change in an array of data from one period to the next. The goals of the tests are to either produce a small sample of suspicious transactions, a small set of transaction groups, or a risk score related to individual transactions or a group of items. The new edition includes over two hundred figures. Each chapter, where applicable, includes one or more cases showing how the tests under discussion could have detected the fraud or anomalies. The new edition also includes two chapters each describing multi-million-dollar fraud schemes and the insights that can be learned from those examples. These interesting real-world examples help to make the text accessible and understandable for accounting professionals and accounting students without rigorous backgrounds in mathematics and statistics. Emphasizing practical applications, the new edition shows how to use either Excel or Access to run these analytics tests. The book also has some coverage on using Minitab, IDEA, R, and Tableau to run forensic-focused tests. The use of SAS and Power BI rounds out the software coverage. The software screenshots use the latest versions of the software available at the time of writing. This authoritative book: Describes the use of statistically-based techniques including Benford’s Law, descriptive statistics, and the vector variation score to detect errors and anomalies Shows how to run most of the tests in Access and Excel, and other data analysis software packages for a small sample of the tests Applies the tests under review in each chapter to the same purchasing card data from a government entity Includes interesting cases studies throughout that are linked to the tests being reviewed. Includes two comprehensive case studies where data analytics could have detected the frauds before they reached multi-million-dollar levels Includes a continually-updated companion website with the data sets used in the chapters, the queries used in the chapters, extra coverage of some topics or cases, end of chapter questions, and end of chapter cases. Written by a prominent educator and researcher in forensic accounting and auditing, the new edition of Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations is an essential resource for forensic accountants, auditors, comptrollers, fraud investigators, and graduate students.

Practical Statistics for Data Scientists, 2nd Edition

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data

Principles of Managerial Statistics and Data Science

Introduces readers to the principles of managerial statistics and data science, with an emphasis on statistical literacy of business students Through a statistical perspective, this book introduces readers to the topic of data science, including Big Data, data analytics, and data wrangling. Chapters include multiple examples showing the application of the theoretical aspects presented. It features practice problems designed to ensure that readers understand the concepts and can apply them using real data. Over 100 open data sets used for examples and problems come from regions throughout the world, allowing the instructor to adapt the application to local data with which students can identify. Applications with these data sets include: Assessing if searches during a police stop in San Diego are dependent on driver’s race Visualizing the association between fat percentage and moisture percentage in Canadian cheese Modeling taxi fares in Chicago using data from millions of rides Analyzing mean sales per unit of legal marijuana products in Washington state Topics covered in Principles of Managerial Statistics and Data Science include:data visualization; descriptive measures; probability; probability distributions; mathematical expectation; confidence intervals; and hypothesis testing. Analysis of variance; simple linear regression; and multiple linear regression are also included. In addition, the book offers contingency tables, Chi-square tests, non-parametric methods, and time series methods. The textbook: Includes academic material usually covered in introductory Statistics courses, but with a data science twist, and less emphasis in the theory Relies on Minitab to present how to perform tasks with a computer Presents and motivates use of data that comes from open portals Focuses on developing an intuition on how the procedures work Exposes readers to the potential in Big Data and current failures of its use Supplementary material includes: a companion website that houses PowerPoint slides; an Instructor's Manual with tips, a syllabus model, and project ideas; R code to reproduce examples and case studies; and information about the open portal data Features an appendix with solutions to some practice problems Principles of Managerial Statistics and Data Science is a textbook for undergraduate and graduate students taking managerial Statistics courses, and a reference book for working business professionals.

Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP, 2nd Edition

Introduces basic concepts in probability and statistics to data science students, as well as engineers and scientists Aimed at undergraduate/graduate-level engineering and natural science students, this timely, fully updated edition of a popular book on statistics and probability shows how real-world problems can be solved using statistical concepts. It removes Excel exhibits and replaces them with R software throughout, and updates both MINITAB and JMP software instructions and content. A new chapter discussing data mining—including big data, classification, machine learning, and visualization—is featured. Another new chapter covers cluster analysis methodologies in hierarchical, nonhierarchical, and model based clustering. The book also offers a chapter on Response Surfaces that previously appeared on the book’s companion website. Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP, Second Edition is broken into two parts. Part I covers topics such as: describing data graphically and numerically, elements of probability, discrete and continuous random variables and their probability distributions, distribution functions of random variables, sampling distributions, estimation of population parameters and hypothesis testing. Part II covers: elements of reliability theory, data mining, cluster analysis, analysis of categorical data, nonparametric tests, simple and multiple linear regression analysis, analysis of variance, factorial designs, response surfaces, and statistical quality control (SQC) including phase I and phase II control charts. The appendices contain statistical tables and charts and answers to selected problems. Features two new chapters—one on Data Mining and another on Cluster Analysis Now contains R exhibits including code, graphical display, and some results MINITAB and JMP have been updated to their latest versions Emphasizes the p-value approach and includes related practical interpretations Offers a more applied statistical focus, and features modified examples to better exhibit statistical concepts Supplemented with an Instructor's-only solutions manual on a book’s companion website Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP is an excellent text for graduate level data science students, and engineers and scientists. It is also an ideal introduction to applied statistics and probability for undergraduate students in engineering and the natural sciences.

Neural Networks Modeling and Control

Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends

Introduction to Stochastic Processes and Simulation

Mastering chance has, for a long time, been a preoccupation of mathematical research. Today, we possess a predictive approach to the evolution of systems based on the theory of probabilities. Even so, uncovering this subject is sometimes complex, because it necessitates a good knowledge of the underlying mathematics. This book offers an introduction to the processes linked to the fluctuations in chance and the use of numerical methods to approach solutions that are difficult to obtain through an analytical approach. It takes classic examples of inventory and queueing management, and addresses more diverse subjects such as equipment reliability, genetics, population dynamics, physics and even market finance. It is addressed to those at Master's level, at university, engineering school or management school, but also to an audience of those in continuing education, in order that they may discover the vast field of decision support.

Advanced Statistics with Applications in R

Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.

Business Statistics with Solutions in R

Business Statistics with Solutions in R covers a wide range of applications of statistics in solving business related problems. It will introduce readers to quantitative tools that are necessary for daily business needs and help them to make evidence-based decisions. The book provides an insight on how to summarize data, analyze it, and draw meaningful inferences that can be used to improve decisions. It will enable readers to develop computational skills and problem-solving competence using the open source language, R. Mustapha Abiodun Akinkunmi uses real life business data for illustrative examples while discussing the basic statistical measures, probability, regression analysis, significance testing, correlation, the Poisson distribution, process control for manufacturing, time series analysis, forecasting techniques, exponential smoothing, univariate and multivariate analysis including ANOVA and MANOVA and more in this valuable reference for policy makers, professionals, academics and individuals interested in the areas of business statistics, applied statistics, statistical computing, finance, management and econometrics.

Practical Time Series Analysis

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

Applied Statistics

Instructs readers on how to use methods of statistics and experimental design with R software Applied statistics covers both the theory and the application of modern statistical and mathematical modelling techniques to applied problems in industry, public services, commerce, and research. It proceeds from a strong theoretical background, but it is practically oriented to develop one's ability to tackle new and non-standard problems confidently. Taking a practical approach to applied statistics, this user-friendly guide teaches readers how to use methods of statistics and experimental design without going deep into the theory. Applied Statistics: Theory and Problem Solutions with R includes chapters that cover R package sampling procedures, analysis of variance, point estimation, and more. It follows on the heels of Rasch and Schott's Mathematical Statistics via that book's theoretical background—taking the lessons learned from there to another level with this book’s addition of instructions on how to employ the methods using R. But there are two important chapters not mentioned in the theoretical back ground as Generalised Linear Models and Spatial Statistics. Offers a practical over theoretical approach to the subject of applied statistics Provides a pre-experimental as well as post-experimental approach to applied statistics Features classroom tested material Applicable to a wide range of people working in experimental design and all empirical sciences Includes 300 different procedures with R and examples with R-programs for the analysis and for determining minimal experimental sizes Applied Statistics: Theory and Problem Solutions with R will appeal to experimenters, statisticians, mathematicians, and all scientists using statistical procedures in the natural sciences, medicine, and psychology amongst others.

A Gentle Introduction to Statistics Using SASⓇ Studio

Point and click your way to performing statistics! Many people are intimidated by learning statistics, but A Gentle Introduction to Statistics Using SAS Studio is here to help. Whether you need to perform statistical analysis for a project or, perhaps, for a course in education, psychology, sociology, economics, or any other field that requires basic statistical skills, this book teaches the fundamentals of statistics, from designing your experiment through calculating logistic regressions. Serving as an introduction to many common statistical tests and principles, it explains concepts in a non-technical way with little math and very few formulas. Once the basic statistical concepts are covered, the book then demonstrates how to use them with SAS Studio and SAS University Edition’s easy point-and-click interface. Topics included in this book are: How to install and use SAS University Edition Descriptive statistics One-sample tests T tests (for independent or paired samples) One-way analysis of variance (ANOVA) N-way ANOVA Correlation analysis Simple and multiple linear regression Binary logistic regression Categorical data, including two-way tables and chi-square Power and sample size calculations Questions are provided to test your knowledge and practice your skills.

Probably Not, 2nd Edition

A revised edition that explores random numbers, probability, and statistical inference at an introductory mathematical level Written in an engaging and entertaining manner, the revised and updated second edition of Probably Not continues to offer an informative guide to probability and prediction. The expanded second edition contains problem and solution sets. In addition, the book’s illustrative examples reveal how we are living in a statistical world, what we can expect, what we really know based upon the information at hand and explains when we only think we know something. The author introduces the principles of probability and explains probability distribution functions. The book covers combined and conditional probabilities and contains a new section on Bayes Theorem and Bayesian Statistics, which features some simple examples including the Presecutor’s Paradox, and Bayesian vs. Frequentist thinking about statistics. New to this edition is a chapter on Benford’s Law that explores measuring the compliance and financial fraud detection using Benford’s Law. This book: Contains relevant mathematics and examples that demonstrate how to use the concepts presented Features a new chapter on Benford’s Law that explains why we find Benford’s law upheld in so many, but not all, natural situations Presents updated Life insurance tables Contains updates on the Gantt Chart example that further develops the discussion of random events Offers a companion site featuring solutions to the problem sets within the book Written for mathematics and statistics students and professionals, the updated edition of Probably Not: Future Prediction Using Probability and Statistical Inference, Second Edition combines the mathematics of probability with real-world examples. LAWRENCE N. DWORSKY, PhD, is a retired Vice President of the Technical Staff and Director of Motorola’s Components Research Laboratory in Schaumburg, Illinois, USA. He is the author of Introduction to Numerical Electrostatics Using MATLAB from Wiley.

Bayesian Statistics the Fun Way

Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don’t even understand, meaning they aren’t getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid belt, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you’ll learn real skills, like how to: •How to measure your own level of uncertainty in a conclusion or belief •Calculate Bayes theorem and understand what it’s useful for •Find the posterior, likelihood, and prior to check the accuracy of your conclusions •Calculate distributions to see the range of your data •Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Associations and Correlations

"Associations and Correlations: Unearth the powerful insights buried in your data" is a comprehensive guide for understanding and utilizing associations and correlations in data analysis. This book walks you through methods of classifying data, selecting appropriate statistical tests, and interpreting results effectively. By the end, you'll have mastered how to reveal data insights clearly and reliably. What this Book will help me do Identify and prepare datasets suitable for analysis with confidence. Understand and apply the principles of associations and correlations in data analytics. Use statistical tests to uncover univariate and multivariate relationships. Classify and interpret data into qualitative and quantitative segments effectively. Develop visual representations of data relationships to communicate insights clearly. Author(s) Lee Baker is an experienced statistician and data scientist with a passion for education. With years of teaching and mentoring professionals in data analysis, Lee excels in breaking down complex statistical concepts into understandable insights. Lee's approachable style aims to empower learners to harness their data's full potential. Who is it for? This book is designed for budding data analysts and data scientists, targeting those starting their journey into data analytics. It serves well as an introduction to the fundamentals of associations and correlations, making it suitable for beginners. If you seek a foundational understanding or a recap of key concepts, this book is for you.

Probability and Statistics for Computer Scientists, 3rd Edition

Probability and statistical methods, simulation techniques, and modeling tools. This third edition textbook adds R, including codes for data analysis examples, helps students solve problems, make optimal decisions in select stochastic models, probabilities and forecasts, and evaluate performance of computer systems and networks.

Digital Processing of Random Oscillations

This book deals with the autoregressive method for digital processing of random oscillations. The method is based on a one-to-one transformation of the numeric factors of the Yule series model to linear elastic system characteristics. This parametric approach allowed to develop a formal processing procedure from the experimental data to obtain estimates of logarithmic decrement and natural frequency of random oscillations. A straightforward mathematical description of the procedure makes it possible to optimize a discretization of oscillation realizations providing efficient estimates. The derived analytical expressions for confidence intervals of estimates enable a priori evaluation of their accuracy. Experimental validation of the method is also provided. Statistical applications for the analysis of mechanical systems arise from the fact that the loads experienced by machineries and various structures often cannot be described by deterministic vibration theory. Therefore, a sufficient description of real oscillatory processes (vibrations) calls for the use of random functions. In engineering practice, the linear vibration theory (modeling phenomena by common linear differential equations) is generally used. This theory’s fundamental concepts such as natural frequency, oscillation decrement, resonance, etc. are credited for its wide use in different technical tasks. In technical applications two types of research tasks exist: direct and inverse. The former allows to determine stochastic characteristics of the system output X(t) resulting from a random process E(t) when the object model is considered known. The direct task enables to evaluate the effect of an operational environment on the designed object and to predict its operation under various loads. The inverse task is aimed at evaluating the object model on known processes E(t) and X(t), i.e. finding model (equations) factors. This task is usually met at the tests of prototypes to identify (or verify) its model experimentally. To characterize random processes a notion of "shaping dynamic system" is commonly used. This concept allows to consider the observing process as the output of a hypothetical system with the input being stationary Gauss-distributed ("white") noise. Therefore, the process may be exhaustively described in terms of parameters of that system. In the case of random oscillations, the "shaping system" is an elastic system described by the common differential equation of the second order: X ̈(t)+2hX ̇(t)+ ω_0^2 X(t)=E(t), where ω0 = 2π/Т0 is the natural frequency, T0 is the oscillation period, and h is a damping factor. As a result, the process X(t) can be characterized in terms of the system parameters – natural frequency and logarithmic oscillations decrement δ = hT0 as well as the process variance. Evaluation of these parameters is subjected to experimental data processing based on frequency or time-domain representations of oscillations. It must be noted that a concept of these parameters evaluation did not change much during the last century. For instance, in case of the spectral density utilization, evaluation of the decrement values is linked with bandwidth measurements at the points of half-power of the observed oscillations. For a time-domain presentation, evaluation of the decrement requires measuring covariance values delayed by a time interval divisible by T0. Both estimation procedures are derived from a continuous description of research phenomena, so the accuracy of estimates is linked directly to the adequacy of discrete representation of random oscillations. This approach is similar a concept of transforming differential equations to difference ones with derivative approximation by corresponding finite differences. The resulting discrete model, being an approximation, features a methodical error which can be decreased but never eliminated. To render such a presentation more accurate it is imperative to decrease the discretization interval and to increase realization size growing requirements for computing power. The spectral density and covariance function estimates comprise a non-parametric (non-formal) approach. In principle, any non-formal approach is a kind of art i.e. the results depend on the performer’s skills. Due to interference of subjective factors in spectral or covariance estimates of random signals, accuracy of results cannot be properly determined or justified. To avoid the abovementioned difficulties, the application of linear time-series models with well-developed procedures for parameter estimates is more advantageous. A method for the analysis of random oscillations using a parametric model corresponding discretely (no approximation error) with a linear elastic system is developed and presented in this book. As a result, a one-to-one transformation of the model’s numerical factors to logarithmic decrement and natural frequency of random oscillations is established. It allowed to develop a formal processing procedure from experimental data to obtain the estimates of δ and ω0. The proposed approach allows researchers to replace traditional subjective techniques by a formal processing procedure providing efficient estimates with analytically defined statistical uncertainties.

GARCH Models, 2nd Edition

Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation, and tests. The book also provides new coverage of several extensions such as multivariate models, looks at financial applications, and explores the very validation of the models used. GARCH Models: Structure, Statistical Inference and Financial Applications, 2nd Edition features a new chapter on Parameter-Driven Volatility Models, which covers Stochastic Volatility Models and Markov Switching Volatility Models. A second new chapter titled Alternative Models for the Conditional Variance contains a section on Stochastic Recurrence Equations and additional material on EGARCH, Log-GARCH, GAS, MIDAS, and intraday volatility models, among others. The book is also updated with a more complete discussion of multivariate GARCH; a new section on Cholesky GARCH; a larger emphasis on the inference of multivariate GARCH models; a new set of corrected problems available online; and an up-to-date list of references. Features up-to-date coverage of the current research in the probability, statistics, and econometric theory of GARCH models Covers significant developments in the field, especially in multivariate models Contains completely renewed chapters with new topics and results Handles both theoretical and applied aspects Applies to researchers in different fields (time series, econometrics, finance) Includes numerous illustrations and applications to real financial series Presents a large collection of exercises with corrections Supplemented by a supporting website featuring R codes, Fortran programs, data sets and Problems with corrections GARCH Models, 2nd Edition is an authoritative, state-of-the-art reference that is ideal for graduate students, researchers, and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.

Hands-On Time Series Analysis with R

Dive into the intricacies of time series analysis and forecasting with R in this comprehensive guide. From foundational concepts to practical implementations, this book equips you with the tools and techniques to analyze, understand, and predict time-dependent data. What this Book will help me do Develop insights by visualizing time-series data and identifying patterns. Master statistical time-series concepts including autocorrelation and moving averages. Learn and implement forecasting models like ARIMA and exponential smoothing. Apply machine learning methodologies for advanced time-series predictions. Work with key R packages for cleaning, manipulating, and analyzing time-series data. Author(s) Rami Krispin is an accomplished statistician and R programmer with extensive experience in data analysis and time-series modeling. His hands-on approach in utilizing R packages and libraries brings clarity to complex time-series concepts. With a passion for teaching and simplifying intricate topics, Rami ensures readers both grasp the theories and apply them effectively. Who is it for? This book is ideal for data analysts, statisticians, and R developers interested in mastering time-series analysis for real-world applications. Designed for readers with a basic understanding of statistics and R programming, it offers a practical approach to learning effective forecasting and data visualization techniques. Professionals aiming to expand their skillset in predictive analytics will find it particularly beneficial.

Practical Applications of Bayesian Reliability

Demonstrates how to solve reliability problems using practical applications of Bayesian models This self-contained reference provides fundamental knowledge of Bayesian reliability and utilizes numerous examples to show how Bayesian models can solve real life reliability problems. It teaches engineers and scientists exactly what Bayesian analysis is, what its benefits are, and how they can apply the methods to solve their own problems. To help readers get started quickly, the book presents many Bayesian models that use JAGS and which require fewer than 10 lines of command. It also offers a number of short R scripts consisting of simple functions to help them become familiar with R coding. Practical Applications of Bayesian Reliability starts by introducing basic concepts of reliability engineering, including random variables, discrete and continuous probability distributions, hazard function, and censored data. Basic concepts of Bayesian statistics, models, reasons, and theory are presented in the following chapter. Coverage of Bayesian computation, Metropolis-Hastings algorithm, and Gibbs Sampling comes next. The book then goes on to teach the concepts of design capability and design for reliability; introduce Bayesian models for estimating system reliability; discuss Bayesian Hierarchical Models and their applications; present linear and logistic regression models in Bayesian Perspective; and more. Provides a step-by-step approach for developing advanced reliability models to solve complex problems, and does not require in-depth understanding of statistical methodology Educates managers on the potential of Bayesian reliability models and associated impact Introduces commonly used predictive reliability models and advanced Bayesian models based on real life applications Includes practical guidelines to construct Bayesian reliability models along with computer codes for all of the case studies JAGS and R codes are provided on an accompanying website to enable practitioners to easily copy them and tailor them to their own applications Practical Applications of Bayesian Reliability is a helpful book for industry practitioners such as reliability engineers, mechanical engineers, electrical engineers, product engineers, system engineers, and materials scientists whose work includes predicting design or product performance.