talk-data.com talk-data.com

Event

O'Reilly Data Science Books

2013-08-09 – 2026-02-25 Oreilly Visit website ↗

Activities tracked

528

Collection of O'Reilly books on Data Science.

Filtering by: Analytics ×

Sessions & talks

Showing 426–450 of 528 · Newest first

Search within this event →
Behind Every Good Decision

So you’re not a numbers person? No worries! You say that you can’t understand how to read, let alone implement, these complex software programs that crunch all the data and spit out . . . more data? Not a problem either! There is a costly misconception in business today--that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. But actually, nothing could be further from the truth. In , authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool!--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. Readers will learn how to: Behind Every Good Decision Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!

Data-Driven Healthcare: How Analytics and BI are Transforming the Industry

Healthcare is changing, and data is the catalyst Data is taking over in a powerful way, and it's revolutionizing the healthcare industry. You have more data available than ever before, and applying the right analytics can spur growth. Benefits extend to patients, providers, and board members, and the technology can make centralized patient management a reality. Despite the potential for growth, many in the industry and government are questioning the value of data in health care, wondering if it's worth the investment. Data-Driven Healthcare: How Analytics and BI are Transforming the Industry tackles the issue and proves why BI is not only worth it, but necessary for industry advancement. Healthcare BI guru Laura Madsen challenges the notion that data have little value in healthcare, and shows how BI can ease regulatory reporting pressures and streamline the entire system as it evolves. Madsen illustrates how a data-driven organization is created, and how it can transform the industry. Learn why BI is a boon to providers Create powerful infographics to communicate data more effectively Find out how Big Data has transformed other industries, and how it applies to healthcare Data-Driven Healthcare: How Analytics and BI are Transforming the Industry provides tables, checklists, and forms that allow you to take immediate action in implementing BI in your organization. You can't afford to be behind the curve. The industry is moving on, with or without you. Data-Driven Healthcare: How Analytics and BI are Transforming the Industry is your guide to utilizing data to advance your operation in an industry where data-fueled growth will be the new norm.

Business Analytics Principles, Concepts, and Applications with SAS: What, Why, and How

Learn everything you need to know to start using business analytics and integrating it throughout your organization. brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. will be a valuable resource for all beginning-to-intermediate level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research. Business Analytics Principles, Concepts, and Applications with SAS

Right-Time Experiences: Driving Revenue with Mobile and Big Data

Grasp how mobile, big data, and analytics are combining to change business processes Right Experience, Right Results: Improving Profits, Margin, and Engagement with Mobile and Big Data illustrates how businesses can use mobility, big data, and analytics to enhance or change business processes, improve margins through better insight, transform customer experiences, empower employees with real-time, actionable insight, and more. The book depicts how companies can create competitive differentiation using mobile, cloud computing big data, and analytics to improve commerce, customer service, and communications with employees and consumers. In the past, the technologies used to deliver personalized and contextual services were either unavailable, unaffordable, or reserved solely for the consumer market. Today, however, the next wave of computing—mobile, cloud computing. big data, and analytics—has provided the foundation for businesses to create adaptive, personalized applications and services. Delivered point-of-need, these smarter services allow enterprise products and services to meet the burgeoning demand for always-connected, accurate, and real-time information. Right Experience, Right Results: Improving Profits, Margin, and Engagement with Mobile and Big Data is your guide to the new way of doing things. The book includes: Real world examples that illustrate how companies across various industries are creating better business processes by integrating new technologies A three step action plan for getting started and overcoming obstacles An electronic checklist with numerous actions that help get you up and running with incorporating mobile, big data, and analytics A guide to drawing insight from mobile, social, and other sources to create richer experiences If you're a CEO, chief marketing officer, marketing director, or business manager, Right Experience, Right Results gives you everything you need to harness technology to breathe new life into your business.

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner

This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries.

Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software.

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence.

This book is part of the SAS Press program.

Modeling Techniques in Predictive Analytics: Business Problems and Solutions with R, Revised and Expanded Edition

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations– not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

The Analytics Revolution

Lead your organization into the industrial revolution of analytics with The Analytics Revolution The topics of big data and analytics continue to be among the most discussed and pursued in the business world today. While a decade ago many people still questioned whether or not data and analytics would help improve their businesses, today virtually no one questions the value that analytics brings to the table. The Analytics Revolution focuses on how this evolution has come to pass and explores the next wave of evolution that is underway. Making analytics operational involves automating and embedding analytics directly into business processes and allowing the analytics to prescribe and make decisions. It is already occurring all around us whether we know it or not. The Analytics Revolution delves into the requirements for laying a solid technical and organizational foundation that is capable of supporting operational analytics at scale, and covers factors to consider if an organization is to succeed in making analytics operational. Along the way, you'll learn how changes in technology and the business environment have led to the necessity of both incorporating big data into analytic processes and making them operational. The book cuts straight through the considerable marketplace hype and focuses on what is really important. The book includes: An overview of what operational analytics are and what trends lead us to them Tips on structuring technology infrastructure and analytics organizations to succeed A discussion of how to change corporate culture to enable both faster discovery of important new analytics and quicker implementation cycles of what is discovered Guidance on how to justify, implement, and govern operational analytics The Analytics Revolution gives you everything you need to implement operational analytic processes with big data.

Guerrilla Analytics

Doing data science is difficult. Projects are typically very dynamic with requirements that change as data understanding grows. The data itself arrives piecemeal, is added to, replaced, contains undiscovered flaws and comes from a variety of sources. Teams also have mixed skill sets and tooling is often limited. Despite these disruptions, a data science team must get off the ground fast and begin demonstrating value with traceable, tested work products. This is when you need Guerrilla Analytics. In this book, you will learn about: The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting. Reproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutiny. Practice tips and war stories: 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research. Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions. Data gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting Reproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutiny Practice tips and war stories: 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions Data gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects

Advanced Analytics Methodologies: Driving Business Value with Analytics

Advanced Analytics Methodologies is today's definitive guide to analytics implementation for MBA and university-level business students and sophisticated practitioners. Its expanded, cutting-edge coverage helps readers systematically "jump the gap" between their organization's current analytical capabilities and where they need to be. Step by step, Michele Chambers and Thomas Dinsmore help readers customize a complete roadmap for implementing analytics that supports unique corporate strategies, aligns with specific corporate cultures, and serves unique customer and stakeholder communities. Drawing on work with dozens of leading enterprises, Michele Chambers and Thomas Dinsmore provide advanced applications and examples not available elsewhere, describe high-value applications from many industries, and help you systematically identify and deliver on your company's best opportunities. They show how to: Go beyond the Analytics Maturity Model: power your unique business strategy with an equally focused analytics strategy Link key business objectives with core characteristics of your organization, value chain, and stakeholders Take advantage of game changing opportunities before competitors do Effectively integrate the managerial and operational aspects of analytics Measure performance with dashboards, scorecards, visualization, simulation, and more Prioritize and score prospective analytics projects Identify "Quick Wins" you can implement while you're planning for the long-term Build an effective Analytic Program Office to make your roadmap persistent Update and revise your roadmap for new needs and technologies This advanced text will serve the needs of students and faculty studying cutting-edge analytics techniques, as well as experienced analytics leaders and professionals including Chief Analytics Officers; Chief Data Officers; Chief Scientists; Chief Marketing Officers; Chief Risk Officers; Chief Strategy Officers; VPs of Analytics or Big Data; data scientists; business strategists; and many line-of-business executives.

Understanding the Predictive Analytics Lifecycle

A high-level, informal look at the different stages of the predictive analytics cycle Understanding the Predictive Analytics Lifecycle covers each phase of the development of a predictive analytics initiative. Through the use of illuminating case studies across a range of industries that include banking, megaresorts, mobile operators, healthcare, manufacturing, and retail, the book successfully illustrates each phase of the predictive analytics cycle to create a playbook for future projects. Predictive business analytics involves a wide variety of inputs that include individuals' skills, technologies, tools, and processes. To create a successful analytics program or project to gain forward-looking insight into making business decisions and actions, all of these factors must properly align. The book focuses on developing new insights and understanding business performance based on extensive use of data, statistical and quantitative analysis, explanatory and predictive modeling, and fact-based management as input for human decisions. The book includes: An overview of all relevant phases: design, prepare, explore, model, communicate, and measure Coverage of the stages of the predictive analytics cycle across different industries and countries A chapter dedicated to each of the phases of the development of a predictive initiative A comprehensive overview of the entire analytic process lifecycle If you're an executive looking to understand the predictive analytics lifecycle, this is a must-read resource and reference guide.

Analytics and Big Data: The Davenport Collection (6 Items)

The Analytics and Big Data collection offers a “greatest hits” digital compilation of ideas from world-renowned thought leader Thomas Davenport, who helped popularize the terms analytics and big data in the workplace. An agile and prolific thinker, Davenport has written or coauthored more than a dozen bestselling books. Several of these titles are offered together for the first time in this curated digital bundle, including: Big Data at Work, Competing on Analytics, Analytics at Work, and Keeping Up with the Quants. The collection also includes Davenport’s popular Harvard Business Review articles, “Data Scientist: The Sexiest Job of the 21st Century” (2012) and “Analytics 3.0” (2013). Combined, these works cover all the bases on analytics and big data: what each term means; the ramifications of each from a technical, consumer, and management perspective; and where each can have the biggest impact on your business. Whether you’re an executive, a manager, or a student wanting to learn more, Analytics and Big Data is the most comprehensive collection you’ll find on the ever-growing phenomenon of digital data and analysis—and how you can make this rising business trend work for you. Named one of the ten “Masters of the New Economy” by CIO magazine, Thomas Davenport has helped hundreds of companies revitalize their management practices. He combines his interests in research, teaching, and business management as the President’s Distinguished Professor of Information Technology & Management at Babson College. Davenport has also taught at Harvard Business School, the University of Chicago, Dartmouth’s Tuck School of Business, and the University of Texas at Austin and has directed research centers at Accenture, McKinsey & Company, Ernst & Young, and CSC. He is also an independent Senior Advisor to Deloitte Analytics.

Modern Analytics Methodologies: Driving Business Value with Analytics

Create a complete roadmap for capitalizing on analytics to grow topline revenue and build shareholder value in your unique organization! Modern Analytics Methodologies goes far beyond the classic Analytics Maturity Model to help you overcome the gaps between your current analytics capabilities and where you need to go. Pioneering analytics experts Michele Chambers and Thomas Dinsmore help you implement analytics that supports your strategy, aligns with your culture, and serves your customers and stakeholders. Drawing on work with dozens of leading enterprises, Michele Chambers and Thomas Dinsmore describe high-value applications from many industries, and help you systematically identify and deliver on your company's best opportunities. Writing for both professionals and students, they show how to: Leverage the convergence of macro trends ranging from "flattening" and "green" to Big Data and machine learning Go beyond the Analytics Maturity Model: power your unique business strategy with an equally focused analytics strategy Link key business objectives with core characteristics of your organization, value chain, and stakeholders Take advantage of game changing opportunities before competitors do Effectively integrate the managerial and operational aspects of analytics Measure performance with dashboards, scorecards, visualization, simulation, and more Prioritize and score prospective analytics projects Identify "Quick Wins" you can implement while you're planning for the long-term Build an effective Analytic Program Office to make your roadmap persistent Update and revise your roadmap for new needs and technologies Modern Analytics Methodologies will be an indispensable resource for any executive or professional concerned with analytics, including Chief Analytics Officers; Chief Data Officers; Chief Scientists; Chief Marketing Officers; Chief Risk Officers; Chief Strategy Officers; VPs of Analytics or Big Data; data scientists; business strategists; and line-of-business executives.

Big Data Analytics Strategies for the Smart Grid

By implementing a comprehensive data analytics program, utility companies can meet the continually evolving challenges of modern grids that are operationally efficient, while reconciling the demands of greenhouse gas legislation and establishing a meaningful return on investment from smart grid deployments. Readable and accessible, Big Data Analytics Strategies for the Smart Grid addresses the needs of applying big data technologies and approaches, including Big Data cybersecurity, to the critical infrastructure that makes up the electrical utility grid. It supplies industry stakeholders with an in-depth understanding of the engineering, business, and customer domains within the power delivery market. The book explores the unique needs of electrical utility grids, including operational technology, IT, storage, processing, and how to transform grid assets for the benefit of both the utility business and energy consumers. It not only provides specific examples that illustrate how analytics work and how they are best applied, but also describes how to avoid potential problems and pitfalls. Discussing security and data privacy, it explores the role of the utility in protecting their customers’ right to privacy while still engaging in forward-looking business practices. The book includes discussions of: SAS for asset management tools The AutoGrid approach to commercial analytics Space-Time Insight’s work at the California ISO (CAISO) This book is an ideal resource for mid- to upper-level utility executives who need to understand the business value of smart grid data analytics. It explains critical concepts in a manner that will better position executives to make the right decisions about building their analytics programs. At the same time, the book provides sufficient technical depth that it is useful for data analytics professionals who need to better understand the nuances of the engineering and business challenges unique to the utilities industry.

Big Data, Big Innovation: Enabling Competitive Differentiation through Business Analytics

A practical guide to leveraging your data to spur innovation and growth Your business generates reams of data, but what do you do with it? Reporting is only the beginning. Your data holds the key to innovation and growth - you just need the proper analytics. In Big Data, Big Innovation: Enabling Competitive Differentiation Through Business Analytics, author Evan Stubbs explores the potential gold hiding in your un-mined data. As Chief Analytics Officer for SAS Australia/New Zealand, Stubbs brings an industry insider's perspective to guide you through pattern recognition, analysis, and implementation. Big Data, Big Innovation: Enabling Competitive Differentiation Through Business Analytics details a groundbreaking approach to ensuring your company's upward trajectory. Use this guide to leverage your customer information, financial reports, performance metrics, and more to build a rock-solid foundation for future growth. Build an effective analytics team, and empower them with the right tools Learn how big data drives both evolutionary and revolutionary innovation, and who should be responsible Identify data collection and analysis opportunities and implement action plans Design the platform that suits your company's current and future needs Quantify performance with statistics, programming, and research for a more complete picture of operations Effective management means combining data, people, and analytics to create a synergistic force for innovation and growth. If you want your company to move forward with confidence, Big Data, Big Innovation: Enabling Competitive Differentiation Through Business Analytics can show you how to use what you already have and acquire what you need to succeed.

Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments

Don't squander your most valuable resource! Collectively, your workers are your company's most important and most valuable asset. To make the most of this asset, nothing beats quantitative performance and investment measurement. Learning and Development is an 80 billion-dollar industry, and every valuable employee represents a sizable investment on the part of your company. To keep your business moving forward, effective management of human capital is crucial. It generates plenty of data, and deep analysis of this data helps you provide feedback and make adjustments to capitalize on the combined knowledge, skills, and creativity of your workers. Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments provides a guidebook for collecting, organizing, and analyzing the data surrounding human capital so you can make the most of your employees' potential. Use predictive analysis to optimize human capital investments Learn effective study design and alignment Get the tools you need for measurement, surveys, and analysis Decide what to measure and how to measure it Outline your company's current and future analytics technology needs Map data sources, and overcome barriers to data collection Authors Gene Pease, Bonnie Beresford, and Lew Walker provide case studies in which major companies applied human capital analytics to guide people decisions, and expand upon the role of analytics in Learning and Development. Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments is an essential guide to 21st century human resources and management practices, and can keep you from squandering your company's most valuable resource.

Discovering Knowledge in Data: An Introduction to Data Mining, 2nd Edition

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today's big data world. The author demonstrates how to leverage a company's existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will "learn data mining by doing data mining". By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website with further resources for all readers, and Powerpoint slides, a solutions manual, and suggested projects for instructors who adopt the book

Making Human Capital Analytics Work: Measuring the ROI of Human Capital Processes and Outcomes

PROVE THE VALUE OF YOUR HR PROGRAM WITH HARD DATA While corporate leaders may well know the value of human capital, they don’t always understand the extent to which the HR function contributes to the bottom line. So when times get tough and business budgets get cut, HR departments often take the first hit. In this groundbreaking guide, the cofounders of ROI Institute, Jack Phillips and Patti Phillips, provide the tools and techniques you need to use analytics to show top decision makers the value of HR in your organization. Focusing on three types of analytics--descriptive, predictive, and prescriptive-- Making Human Capital Analytics Work shows how you can apply analytics by: Developing relationships between variables Predicting the success of HR programs Determining the cost of intangibles that are otherwise diffi cult to value Showing the business value of particular HR programs Calculating and forecasting the ROI of various HR projects and programs Much more than a guide to using data collection and analysis, Making Human Capital Analytics Work is a template for spearheading large-scale change in your organization by dramatically influencing your department's overall image within the organization. The authors take you step-by-step through the processes of using hard data to drive decisions and demonstrate the tangible value of HR. You know that your department is more than administrative and transactional--that it's an integral player in your company's strategy. Apply the lessons in Making Human Capital Analytics Work and ensure that all other stakeholders know too.

Analytics and Dynamic Customer Strategy: Big Profits from Big Data

Key decisions determine the success of big data strategy Dynamic Customer Strategy: Big Profits from Big Data is a comprehensive guide to exploiting big data for both business-to-consumer and business-to-business marketing. This complete guide provides a process for rigorous decision making in navigating the data-driven industry shift, informing marketing practice, and aiding businesses in early adoption. Using data from a five-year study to illustrate important concepts and scenarios along the way, the author speaks directly to marketing and operations professionals who may not necessarily be big data savvy. With expert insight and clear analysis, the book helps eliminate paralysis-by-analysis and optimize decision making for marketing performance. Nearly seventy-five percent of marketers plan to adopt a big data analytics solution within two years, but many are likely to fail. Despite intensive planning, generous spending, and the best intentions, these initiatives will not succeed without a manager at the helm who is capable of handling the nuances of big data projects. This requires a new way of marketing, and a new approach to data. It means applying new models and metrics to brand new consumer behaviors. Dynamic Customer Strategy clarifies the situation, and highlights the key decisions that have the greatest impact on a company's big data plan. Topics include: Applying the elements of Dynamic Customer Strategy Acquiring, mining, and analyzing data Metrics and models for big data utilization Shifting perspective from model to customer Big data is a tremendous opportunity for marketers and may just be the only factor that will allow marketers to keep pace with the changing consumer and thus keep brands relevant at a time of unprecedented choice. But like any tool, it must be wielded with skill and precision. Dynamic Customer Strategy: Big Profits from Big Data helps marketers shape a strategy that works.

Microsoft SQL Server 2014 Business Intelligence Development Beginner's Guide

Microsoft SQL Server 2014 Business Intelligence Development Beginner's Guide introduces you to Microsoft's BI tools and systems. You'll gain hands-on experience building solutions that handle data warehousing, reporting, and predictive analytics. With step-by-step tutorials, you'll be equipped to transform data into actionable insights. What this Book will help me do Understand and implement multidimensional data models using SSAS and MDX. Write and use DAX queries and leverage SSAS tabular models effectively. Improve and maintain data integrity using MDS and DQS tools. Design and develop polished, insightful dashboards and reports using PerformancePoint, Power View, and SSRS. Explore advanced data analysis features, such as Power Query, Power Map, and basic data mining techniques. Author(s) Abolfazl Radgoudarzi and Reza Rad are experienced practitioners and educators in the field of business intelligence. They specialize in SQL Server BI technologies and have extensive careers helping organizations harness data for decision-making. Their approach combines clear explanations with practical examples, ensuring readers can effectively apply what they learn. Who is it for? This book is ideal for database developers, system analysts, and IT professionals looking to build strong foundations in Microsoft SQL Server's BI technologies. Beginners in business intelligence or data management will find the topics accessible. Intermediate practitioners will expand their ability to build complete BI solutions. It's designed for anyone eager to develop skills in data modeling, analysis, and visualization.

Computational Intelligence in Business Analytics: Concepts, Methods, and Tools for Big Data Applications

Use computational intelligence to drive more value from business analytics, overcome real-world uncertainties and complexities, and make better decisions. Drawing on his pioneering experience as an instructor and researcher, Dr. Les Sztandera thoroughly illuminates today's key computational intelligence tools, knowledge, and strategies for analysis, exploration, and knowledge generation. Sztandera demystifies artificial neural networks, genetic algorithms, and fuzzy systems, and guides you through using them to model, discover, and interpret new patterns that can't be found through statistical methods alone. Packed with relevant case studies and examples, this guide demonstrates: Customer segmentation for direct marketing Customer profiling for relationship management Efficient mailing campaigns Customer retention Identification of cross-selling opportunities Credit score analysis Detection of fraudulent behavior and transactions Hedge fund strategies, and more Szandera shows how computational intelligence can inform the design and integration of services, architecture, brand identity, and product portfolio across the entire enterprise. He also shows how to complement computational intelligence with visualization, explorative interfaces and advanced reporting, thereby empowering business users and enterprise stakeholders to take full advantage of it. For analytics professionals, managers, and students.

Analytics in a Big Data World: The Essential Guide to Data Science and its Applications

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

Analytics Across the Enterprise: How IBM Realizes Business Value from Big Data and Analytics

How to Transform Your Organization with Analytics: Insider Lessons from IBM’s Pioneering Experience Analytics is not just a technology: It is a better way to do business. Using analytics, you can systematically inform human judgment with data-driven insight. This doesn’t just improve decision-making: It also enables greater innovation and creativity in support of strategy. Your transformation won’t happen overnight; however, it is absolutely achievable, and the rewards are immense. This book demystifies your analytics journey by showing you how IBM has successfully leveraged analytics across the enterprise, worldwide. Three of IBM’s pioneering analytics practitioners share invaluable real-world perspectives on what does and doesn’t work and how you can start or accelerate your own transformation. This book provides an essential framework for becoming a smarter enterprise and shows through 31 case studies how IBM has derived value from analytics throughout its business. Coverage Includes Creating a smarter workforce through big data and analytics More effectively optimizing supply chain processes Systematically improving financial forecasting Managing financial risk, increasing operational efficiency, and creating business value Reaching more B2B or B2C customers and deepening their engagement Optimizing manufacturing and product management processes Deploying your sales organization to increase revenue and effectiveness Achieving new levels of excellence in services delivery and reducing risk Transforming IT to enable wider use of analytics “Measuring the immeasurable” and filling gaps in imperfect data Whatever your industry or role, whether a current or future leader, analytics can make you smarter and more competitive. Analytics Across the Enterprise shows how IBM did it--and how you can, too. Learn more about IBM Analytics

Developing Analytic Talent: Becoming a Data Scientist

Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.

It's Not the Size of the Data -- It's How You Use It
Brand tracking, CRM programs, trade shows, online behavior tracking, satisfaction studies. Mounds of marketing metrics are generated across touchpoints and channels. It can be information overload--too much, too scattered. But locked in the vast quantity of information are accurate, data-driven answers to every marketing question. Analytic dashboards are transformative web-based tools that gather, syn the size, and visually display essential data in real time, directly connecting marketing with performance. World renowned marketing expert Koen Pauwels supplies a simple yet rigorous methodology and wealth of case studies to help any size organization, in any industry, turn data into productive action. He explains step by step how to: ● Gain crucial IT support ● Build a rock-solid database ● Select key leading performance indicators ● Design the optimal dashboard layout ● Use marketing analytics to improve decisions and reap rewards Gut decisions are outdated and downright dangerous. Whether you're trying to allocate resources between online and offline marketing, measure the ROI of specific efforts, or scale up a creative campaign, dashboard analytics bring scientific precision and insight to marketing efforts--with far better results.