talk-data.com talk-data.com

Event

O'Reilly Data Science Books

2013-08-09 – 2026-02-25 Oreilly Visit website ↗

Activities tracked

2093

Collection of O'Reilly books on Data Science.

Filtering by: data ×

Sessions & talks

Showing 476–500 of 2093 · Newest first

Search within this event →
Information Theory Meets Power Laws

Discover new theoretical connections between stochastic phenomena and the structure of natural language with this powerful volume! Information Theory Meets Power Laws: Stochastic Processes and Language Models presents readers with a novel subtype of a probabilistic approach to language, which is based on statistical laws of texts and their analysis by means of information theory. The distinguished author insightfully and rigorously examines the linguistic and mathematical subject matter while eschewing needlessly abstract and superfluous constructions. The book begins with a less formal treatment of its subjects in the first chapter, introducing its concepts to readers without mathematical training and allowing those unfamiliar with linguistics to learn the book’s motivations. Despite its inherent complexity, Information Theory Meets Power Laws: Stochastic Processes and Language Models is a surprisingly approachable treatment of idealized mathematical models of human language. The author succeeds in developing some of the theory underlying fundamental stochastic and semantic phenomena, like strong nonergodicity, in a way that has not previously been seriously attempted. In doing so, he covers topics including: Zipf’s and Herdan’s laws for natural language Power laws for information, repetitions, and correlations Markov, finite-state,and Santa Fe processes Bayesian and frequentist interpretations of probability Ergodic decomposition, Kolmogorov complexity, and universal coding Theorems about facts and words Information measures for fields Rényi entropies, recurrence times, and subword complexity Asymptotically mean stationary processes Written primarily for mathematics graduate students and professionals interested in information theory or discrete stochastic processes, Information Theory Meets Power Laws: Stochastic Processes and Language Models also belongs on the bookshelves of doctoral students and researchers in artificial intelligence, computational and quantitative linguistics as well as physics of complex systems.

Microsoft Power Platform Functional Consultant: PL-200 Exam Guide

Gain a comprehensive understanding of Microsoft Power Platform as you prepare for the PL-200 Functional Consultant Exam. Dive into practical, hands-on guidance to customize and configure the platform effectively. What this Book will help me do Master the art of creating and configuring model-driven and canvas Power Apps. Learn to develop automated processes with Power Automate and manage workflows. Understand the setup and role of Dataverse for robust data handling within Power Platform. Integrate Power Platform tools with Microsoft 365 and Teams effectively. Prepare confidently for the PL-200 certification with mock exams and detailed insights. Author(s) None Sharp is an experienced consultant specializing in Microsoft technologies, including the Power Platform. With years of expertise helping organizations optimize their workflows, None brings practical insights and a structured approach to learning. This book reflects their commitment to educating aspiring consultants and Microsoft technology users. Who is it for? This book is ideal for functional consultants and business analysts in the technology space seeking to leverage Microsoft Power Platform. It's particularly suited for professionals preparing for the PL-200 certification. A foundation in Power Platform concepts will help readers make the most of this resource.

Applied Regression Modeling, 3rd Edition

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of Applied Regression Modeling delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices. The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content. Applied Regression Modeling covers a wide variety of topics, like: Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus, Applied Regression Modeling also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Statistical Topics and Stochastic Models for Dependent Data with Applications
  This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
SAS Graphics for Clinical Trials by Example

Create industry-compliant graphs with this practical guide for professionals Analysis of clinical trial results is easier when the data is presented in a visual form. However, clinical graphs must conform to specific guidelines in order to satisfy regulatory agency requirements. If you are a programmer working in the health care and life sciences industry and you want to create straightforward, visually appealing graphs using SAS, then this book is designed specifically for you. Written by two experienced practitioners, the book explains why certain graphs are requested, gives the necessary code to create the graphs, and shows you how to create graphs from ADaM data sets modeled on real-world CDISC pilot study data. SAS Graphics for Clinical Trials by Example demonstrates step-by-step how to create both simple and complex graphs using Graph Template Language (GTL) and statistical graphics procedures, including the SGPLOT and SGPANEL procedures. You will learn how to generate commonly used plots such as Kaplan-Meier plots and multi-cell survival plots as well as special purpose graphs such as Venn diagrams and interactive graphs. Because your graph is only as good as the aesthetic appearance of the output, you will learn how to create a custom style, change attributes, and set output options. Whether you are just learning how to produce graphs or have been working with graphs for a while, this book is a must-have resource to solve even the most challenging clinical graph problems.

Pro Microsoft Power BI Administration: Creating a Consistent, Compliant, and Secure Corporate Platform for Business Intelligence

Manage Power BI within organizations. This book helps you systematize administration as Microsoft shifts Power BI from a self-service tool to an enterprise tool. You will learn best practices for many Power BI administrator tasks. And you will know how to manage artifacts such as reports, users, work spaces, apps, and gateways. The book also provides experience-based guidance on governance, licensing, and managing capacities. Good management includes policies and procedures that can be applied consistently and even automatically across a broad user base. This book provides a strategic road map for the creation and implementation of policies and procedures that support Power BI best practices in enterprises. Effective governance depends not only on good policies, but also on the active and timely monitoring of adherence to those policies. This book helps you evaluate the tools to automate and simplify the most common administrativeand monitoring tasks, freeing up administrators to provide greater value to the organization through better user training and awareness initiatives. What You Will Learn Recognize the roles and responsibilities of the Power BI administrator Manage users and their work spaces Know when to consider using Power BI Premium Govern your Power BI implementation and manage Power BI tenants Create an effective security strategy for Power BI in the enterprise Collaborate and share consistent views of the data across all users Follow a life cycle management strategy for rollout of dashboards and reports Create internal training resources backed up by accurate documentation Monitor Power BI to better understand risks and compliance manage costs, and track implementation Who This Book Is For IT professionals tasked with maintaining their corporate Power BI environments, Power BI administrators and power users interested in rolling out Power BI more widely in their organizations, and IT governance professionals tasked with ensuring adherence to policies and regulations

Leading with AI and Analytics: Build Your Data Science IQ to Drive Business Value

Lead your organization to become evidence-driven Data. It’s the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what’s often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. Inside, you’ll find the essential tools to help you: Written for anyone in a leadership or management role—from C-level/unit team managers to rising talent—this powerful, hands-on guide meets today’s growing need for real-world tools to lead and succeed with data. Develop a strong data science intuition quotient Lead and scale AI and analytics throughout your organization Move from “best-guess” decision making to evidence-based decisions Craft strategies and tactics to create real impact

Big Data

Manipulating and processing masses of digital data is never a purely technical activity. It requires an interpretative and exploratory outlook – already well known in the social sciences and the humanities – to convey intelligible results from data analysis algorithms and create new knowledge. Big Data is based on an inquiry of several years within Proxem, a software publisher specializing in big data processing. The book examines how data scientists explore, interpret and visualize our digital traces to make sense of them, and to produce new knowledge. Grounded in epistemology and science and technology studies, Big Data offers a reflection on data in general, and on how they help us to better understand reality and decide on our daily actions.

Essential Statistics for Non-STEM Data Analysts

Essential Statistics for Non-STEM Data Analysts is your comprehensive guide to mastering the statistical concepts needed for data science. By working through real-world datasets and Python-based examples, you'll learn how to interpret data and build insightful analyses. This book demystifies statistics, making it accessible to anyone aiming to become proficient in data analysis. What this Book will help me do Learn how to preprocess, clean, and prepare data for analysis using Python. Master the foundations of statistical methods such as hypothesis testing and probability theory. Develop skills to interpret and explain statistical results in the context of data science. Understand how statistical concepts apply to machine learning tasks like classification and regression. Build confidence in statistical principles to tackle interviews and enhance your career prospects. Author(s) None Li is an experienced data scientist and educator with a strong focus on making abstract statistical concepts intuitive and applicable. With a background in designing data science curriculums, None has a passion for teaching statistics to individuals from diverse and often non-mathematical backgrounds. Through clear explanations and practical examples, None aims to empower everyone to excel in data analysis and machine learning. Who is it for? This book caters specifically to data analysts, data science enthusiasts, and developers eager to enhance their statistical knowledge. It's crafted for readers transitioning into data science who may lack a strong mathematical or statistics background. If you have a basic grasp of Python programming and a keen interest in understanding how to work effectively with data, this book is a perfect fit. Beginners and students aiming to familiarize themselves with statistical foundations for data-oriented careers will greatly benefit from this resource.

Python for Algorithmic Trading

Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms

Empowered by Data

Learn to build an analytics community in your organization from scratch How to Build a Data Community shows readers how to create analytics and data communities within their organizations. Celebrated author Eva Murray relies on intuitive and practical advice structured as step-by-step guidance to demonstrate the creation of new data communities. How to Build a Data Community uses concrete insights gleaned from real-world case studies to describe, in full detail, all the critical components of a data community. Readers will discover: What analytics communities are and what they look like Why data-driven organizations need analytics communities How selected businesses and nonprofits have applied these concepts successfully and what their journey to a data-driven culture looked like. How they can establish their own communities and what they can do to ensure their community grows and flourishes Perfect for analytics professionals who are responsible for making policy-level decisions about data in their firms, the book is also a must-have for data practitioners and consultants who wish to make positive changes in the organizations with which they work.

IoT-Based Data Analytics for the Healthcare Industry

IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. Provides state-of-art methods and current trends in data analytics for the healthcare industry Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques Discusses several potential AI techniques developed using IoT for the healthcare industry Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages

Machine Learning and Data Science Blueprints for Finance

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Microsoft Power BI Quick Start Guide - Second Edition

"Microsoft Power BI Quick Start Guide" is your essential companion to mastering data visualization and analysis using Microsoft Power BI. This book offers step-by-step guidance on exploring data sources, creating effective dashboards, and leveraging advanced features like dataflows and AI insights to derive actionable intelligence quickly and effectively. What this Book will help me do Connect and import data from various sources using Power BI tools. Transform and cleanse data using the Power BI Query Editor and other techniques. Design optimized data models with relationships and DAX calculations. Create dynamic and visually compelling reports and dashboards. Implement row-level security and manage Power BI deployments within an organization. Author(s) Devin Knight, Erin Ostrowsky, and Mitchell Pearson are seasoned Power BI experts with extensive experience in business intelligence and data analytics. They bring a hands-on approach to teaching, focusing on practical skills and real-world applications. Their joint experience ensures a thorough and clear learning experience. Who is it for? This book is tailored for aspiring business intelligence professionals who wish to harness the power of Microsoft Power BI. If you have foundational knowledge of business intelligence concepts and are eager to apply them practically, this guide is for you. It's also ideal for individuals looking to upgrade their BI skill set and adopt modern data analysis tools. Whether a beginner or looking to enhance your current skills, you'll find tremendous value here.

The Big R-Book

Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business users Contains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reporting Uses a practical tone and integrates multiple topics in a coherent framework Demystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in R Shows readers how to visualize results in static and interactive reports Supplementary materials includes PDF slides based on the book’s content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models.

Discrete Networked Dynamic Systems

Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs. This book addresses advanced analytical tools for characterization control, estimation and design of networked dynamic systems over fixed, probabilistic and time-varying graphs Provides coherent results on adopting a set-theoretic framework for critically examining problems of the analysis, performance and design of discrete distributed systems over graphs Deals with both homogeneous and heterogeneous systems to guarantee the generality of design results

Beginning R 4: From Beginner to Pro

Learn how to use R 4, write and save R scripts, read in and write out data files, use built-in functions, and understand common statistical methods. This in-depth tutorial includes key R 4 features including a new color palette for charts, an enhanced reference counting system (useful for big data), and new data import settings for text (as well as the statistical methods to model text-based, categorical data). Each chapter starts with a list of learning outcomes and concludes with a summary of any R functions introduced in that chapter, along with exercises to test your new knowledge. The text opens with a hands-on installation of R and CRAN packages for both Windows and macOS. The bulk of the book is an introduction to statistical methods (non-proof-based, applied statistics) that relies heavily on R (and R visualizations) to understand, motivate, and conduct statistical tests and modeling. Beginning R 4 shows the use of R in specific cases such as ANOVA analysis, multiple and moderated regression, data visualization, hypothesis testing, and more. It takes a hands-on, example-based approach incorporating best practices with clear explanations of the statistics being done. You will: Acquire and install R and RStudio Import and export data from multiple file formats Analyze data and generate graphics (including confidence intervals) Interactively conduct hypothesis testing Code multiple and moderated regression solutions Who This Book Is For Programmers and data analysts who are new to R. Some prior experience in programming is recommended.

Mastering SAS Programming for Data Warehousing

"Mastering SAS Programming for Data Warehousing" dives into the effective use of SAS for handling large-scale data environments like data warehouses and data lakes. You will learn to design and manage ETL processes using SAS, standardize workflows with macros and arrays, and connect SAS to other systems to enhance reporting and data visualization. What this Book will help me do Master efficient data input/output management in SAS environments. Design and maintain robust ETL pipelines using SAS macros and arrays. Identify and address data warehouse user requirements. Utilize Output Delivery System (ODS) to create professional reports. Integrate SAS with external systems for optimized data processing. Author(s) Monika Wahi brings extensive SAS programming experience coupled with a strong background in data warehousing and data analysis. Her insightful approach demystifies complex topics, focusing on equipping readers with practical skills. Her collaborative writing style makes advanced concepts accessible and applicable to real-world scenarios. Who is it for? This book is designed for data professionals such as architects, managers leading data-intensive projects, and SAS programmers or developers. It's ideal for those with foundational SAS experience who aspire to manage, maintain, or develop data lakes, marts, or warehouses effectively. The book offers a logical progression from basic concepts to advanced implementations, tailored for ambitious learners.

Advanced Analytics in Power BI with R and Python: Ingesting, Transforming, Visualizing

This easy-to-follow guide provides R and Python recipes to help you learn and apply the top languages in the field of data analytics to your work in Microsoft Power BI. Data analytics expert and author Ryan Wade shows you how to use R and Python to perform tasks that are extremely hard, if not impossible, to do using native Power BI tools. For example, you will learn to score Power BI data using custom data science models and powerful models from Microsoft Cognitive Services. The R and Python languages are powerful complements to Power BI. They enable advanced data transformation techniques that are difficult to perform in Power BI in its default configuration but become easier by leveraging the capabilities of R and Python. If you are a business analyst, data analyst, or a data scientist who wants to push Power BI and transform it from being just a business intelligence tool into an advanced data analytics tool, then this is the book to help you do that. What You Will Learn Create advanced data visualizations via R using the ggplot2 package Ingest data using R and Python to overcome some limitations of Power Query Apply machine learning models to your data using R and Python without the need of Power BI premium capacity Incorporate advanced AI in Power BI without the need of Power BI premium capacity via Microsoft Cognitive Services, IBM Watson Natural Language Understanding, and pre-trained models in SQL Server Machine Learning Services Perform advanced string manipulations not otherwise possible in Power BI using R and Python Who This Book Is For Power users, data analysts, and data scientists who want to go beyond Power BI’s built-in functionality to create advanced visualizations, transform data in ways not otherwise supported, and automate data ingestion from sources such as SQL Server and Excel in a more concise way

Predictive Intelligence in Biomedical and Health Informatics

Predictive Intelligence in Biomedical and Health Informatics focuses on imaging, computer-aided diagnosis and therapy as well as intelligent biomedical image processing and analysis. It develops computational models, methods and tools for biomedical engineering related to computer-aided diagnostics (CAD), computer-aided surgery (CAS), computational anatomy and bioinformatics. Large volumes of complex data are often a key feature of biomedical and engineering problems and computational intelligence helps to address such problems. Practical and validated solutions to hard biomedical and engineering problems can be developed by the applications of neural networks, support vector machines, reservoir computing, evolutionary optimization, biosignal processing, pattern recognition methods and other techniques to address complex problems of the real world.

Stochastic Dynamics of Economic Cycles

This book includes discussions related to solutions of such tasks as: probabilistic description of the investment function; recovering the income function from GDP estimates; development of models for the economic cycles; selecting the time interval of pseudo-stationarity of cycles; estimating characteristics/parameters of cycle models; analysis of accuracy of model factors. All of the above constitute the general principles of a theory explaining the phenomenon of economic cycles and provide mathematical tools for their quantitative description. The introduced theory is applicable to macroeconomic analyses as well as econometric estimations of economic cycles.

Pro Microsoft Power Platform: Solution Building for the Citizen Developer

Become a self-sufficient citizen developer by learning the tools within the Microsoft Power Platform and how they can be used together to drive change and multiply your productivity. Learn about PowerApps for building applications, Power Automate for automating business processes across those applications, and Power BI for analyzing results and communicating business intelligence through compelling visuals. By understanding the purpose and capabilities of these tools, you will be able to enhance your organization’s visibility into key areas and make informed business decisions in a timely matter. This book is divided into four parts and begins in Part I by showing you how to build applications through PowerApps. You will learn about screens and controls, application sharing and administration, and how to make your applications accessible from mobile devices such as phones and tablets. Part II is about creating workflows using Power Automate that implement business logic across your applications. Part III brings in dashboards and data analysis, showing you how to connect to a data source, cleanse the data from that source, and drive decision making through interactive reports and storytelling. Part IV brings together all the pieces by showing the integrations that are possible when all three tools are combined into a single solution. What You Will Learn Understand the need for the citizen developer in today’s business environment Organize and plan the building of line-of-business applications with PowerApps solutions Replace wasteful paper processes with automated applications built in PowerApps Automate workflows across processes with Power Automate Communicate analytical results through visualizations and storytelling Integrate PowerApps, Power Automate, and Power BI into solutions that multiply productivity Who This Book Is For Power users and analysts with strong Excel skills who need a more comprehensive set of tools that can better help them accomplish their vision on projects, those familiar with one of the Power Platform tools who wish to learn how all three can fit together, and those who are seen as as “rogue IT” problem solvers who get things done when others have tried but failed