talk-data.com talk-data.com

Event

SciPy 2025

2025-07-07 – 2025-07-13 PyData

Activities tracked

8

Filtering by: Pandas ×

Sessions & talks

Showing 1–8 of 8 · Newest first

Search within this event →

Accelerated DataFrames for all: Bringing GPU acceleration to pandas and Polars

2025-07-10
talk

In Python, data analytics users often prioritize convenience, flexibility, and familiarity over pure performance. The cuDF DataFrame library provides a pandas-like experience with from 10x up to 50x performance improvements, but subtle differences prevent it from being a true drop-in replacement for many users. This talk will showcase the evolution of this library to provide zero-code change experiences, first for pandas users and now for Polars. We will provide examples of this usage and a high level overview of how users can make use of these today. We will then delve into the details of how GPU acceleration is implemented differently in pandas and Polars, along with a deep dive into some of the different technical challenges encountered for each. This talk will have something for both data practitioners and library developers.

Advanced Machine Learning Techniques for Predicting Properties of Synthetic Aviation Fuels using Python

2025-07-10
talk

Synthetic aviation fuels (SAFs) offer a pathway to improving efficiency, but high cost and volume requirements hinder property testing and increase risk of developing low-performing fuels. To promote productive SAF research, we used Fourier Transform Infrared (FTIR) spectra to train accurate, interpretable fuel property models. In this presentation, we will discuss how we leveraged standard Python libraries – NumPy, pandas, and scikit-learn – and Non-negative Matrix Factorization to decompose FTIR spectra and develop predictive models. Specifically, we will review the pipeline developed for preprocessing FTIR data, the ensemble models used for property prediction, and how the features correlate with physicochemical properties.

Generative AI in Engineering Education: A Tool for Learning, Not a Replacement for Skills

2025-07-09
talk

Generative Artificial Intelligence (AI) is reshaping engineering education by offering students new ways to engage with complex concepts and content. Ethical concerns including bias, intellectual property, and plagiarism make Generative AI a controversial educational tool. Overreliance on AI may also lead to academic integrity issues, necessitating clear student codes of conduct that define acceptable use. As educators we should carefully design learning objectives to align with transferrable career skills in our fields. By practicing backward design with a focus on career-readiness skills, we can incorporate useful prompt engineering, rapid prototyping, and critical reasoning skills that incorporate generative AI. Engineering students want to develop essential career skills such as critical thinking, communication, and technology. This talk will focus on case studies for using generative AI and rapid prototyping for scientific computing in engineering courses for physics, programming, and technical writing. These courses include assignments and reading examples using NumPy, SciPy, Pandas, etc. in Jupyter notebooks. Embracing generative AI tools has helped students compare, evaluate, and discuss work that was inaccessible before generative AI. This talk explores strategies for using AI in engineering education while accomplishing learning objectives and giving students opportunities to practice career readiness skills.

Dynamic Data with Matplotlib

2025-07-09
talk

Matplotlib is already a favorite plotting library for creating static data visualizations in Python. Here, we discuss the development of a new DataContainer interface and accompanying transformation pipeline which enable easier dynamic data visualization in Matplotlib. This improves the experience of plotting pure functions, automatically recomputing when you pan and zoom. Data containers can ingest data from a variety of sources, including structured data such as Pandas Dataframes or Xarrays, up to live updating data from web services or databases. The flexible transformation pipeline allows for control over how your data is encoded into a plot.

Building machine learning pipelines that scale: a case study using Ibis and IbisML

2025-07-07
talk

Pandas and scikit-learn have become staples in the machine learning toolkit for processing and modeling tabular data in Python. However, when data size scales up, these tools become slow or run out of memory. Ibis provides a unified, Pythonic, dataframe-like interface to 20+ execution backends, including dataframe libraries, databases, and analytics engines. Ibis enables users to leverage these powerful tools without rewriting their data engineering code (or learning SQL). IbisML extends the benefits of using Ibis to the ML workflow by letting users preprocess their data at scale on any Ibis-supported backend.

In this tutorial, you'll build an end-to-end machine learning project to predict the live win probability after each move during chess games.

Introduction to Data Analysis Using Pandas

2025-07-07
talk

Working with data can be challenging: it often doesn’t come in the best format for analysis, and understanding it well enough to extract insights requires both time and the skills to filter, aggregate, reshape, and visualize it. This session will equip you with the knowledge you need to effectively use pandas – a powerful library for data analysis in Python – to make this process easier.

Pandas makes it possible to work with tabular data and perform all parts of the analysis from collection and manipulation through aggregation and visualization. While most of this session focuses on pandas, during our discussion of visualization, we will also introduce at a high level Matplotlib (the library that pandas uses for its visualization features, which when used directly makes it possible to create custom layouts, add annotations, etc.) and Seaborn (another plotting library, which features additional plot types and the ability to visualize long-format data).

The-Silmaril: Practice #ontology engineering with Python (and other languages).

2025-07-07
talk

Ontologies provide a powerful way to structure knowledge, enable reasoning, and support more meaningful queries compared to traditional data models. Recently, interest in ontologies has resurged, driven by advancements in language models, reasoning capabilities, and the growing adoption of platforms like Palantir Foundry.

In this hands-on tutorial, participants will explore ontology development across multiple domains using a variety of Python-based tools such as rdflib, Owlready2, PySpark, Pandas, and SciPy. They will learn how ontologies facilitate semantic reasoning, improve data interoperability, and enhance query capabilities.
Additionally, attendees will build a rudimentary reasoning engine to better understand inference mechanisms.
The tutorial emphasizes practical applications and comparisons with conventional data representations, making it ideal for researchers, data engineers, and developers interested in knowledge representation and reasoning.

All the SQL a Pythonista needs to know: an introduction to SQL and DataFrames with DuckDB

2025-07-07
talk

Structured Query Language (or SQL for short) is a programming language to manage data in a database system and an essential part of any data engineer’s tool kit. In this tutorial, you will learn how to use SQL to create databases, tables, insert data into them and extract, filter, join data or make calculations using queries. We will use DuckDB, a new open source embedded in-process database system that combines cutting edge database research with dataframe-inspired ease of use. DuckDB is only a pip install away (with zero dependencies), and runs right on your laptop. You will learn how to use DuckDB with your existing Python tools like Pandas, Polars, and Ibis to simplify and speed up your pipelines. Lastly, you will learn how to use SQL to create fast, interactive data visualizations, and how to teach your data how to fly and share it via the Cloud.