There is a concept in software engineering which is called ‘shifting left’, this focuses on testing software a lot earlier in the development lifecycle than you would normally expect it to. This helps teams building the software create better rituals and processes, while also ensuring quality and usability are key aspects to evaluate as the software is being built. We know this works in software development, but what happens when these practices are used when building AI tools? Saurabh Gupta is a seasoned technology executive and is currently Chief Strategy & Revenue Officer The Modern Data Company. With over 25 years of experience in tech, data and strategy, he has led many strategy and modernization initiatives across industries and disciplines. Through his career, he has worked with various Internation Organizations and NGOs, Public sector and Private sector organizations. Before joining TMDC, he was the Head of Data Strategy & Governance at ThoughtWorks & CDO/Director for Washington DC Gov., where he developed the digital/data modernization strategy for education data. Prior to DCGov he played leadership and strategic roles at organizations including IMF and World Bank where he was responsible for their Data strategy and led the OpenData initiatives. He has also closely worked with African Development Bank, OECD, EuroStat, ECB, UN and FAO as a part of inter-organization working groups on data and development goals. As a part of the taskforce for international data cooperation under the G20 Data Gaps initiative, he chaired the technical working group on data standards and exchange. He also played an advisor role to the African Development Bank on their data democratization efforts under the Africa Information Highway. In the episode, Adel & Saurabh explore the importance of data quality and how ‘shifting left’ can improve data quality practices, the role of data governance, the emergence of data product managers, operationalizing ‘shift left’ strategies through collaboration and data governance, the challenges faced when implementing data governance, future trends in data quality and governance, and much more. Links Mentioned in the Show: The Modern Data CompanyMonte Carlo: The Annual State of Data Quality Survey[Course] Data Governance Concepts[Webinar] Crafting a Lean and Effective Data Governance Strategy Related Episode: Building Trust in Data with Data Governance New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Speaker
Adel
18
talks
Frequent Collaborators
Filter by Event / Source
Talks & appearances
Showing 43 of 43 activities
One of the biggest surprises of the generative AI revolution over the past 2 years lies in the counter-intuitiveness of its most successful use cases. Counter to most predictions made about AI years ago, AI-assisted coding, specifically AI-assisted data work, has been surprisingly one of the biggest killer apps of generative AI tools and copilots. However, what happens when we take this notion even further? How will analytics workflows look like when generative AI tools can also assist us in problem-solving? What type of analytics use cases can we expect to operationalize, and what tools can we expect to work with when AI systems can provide scalable qualitative data instead of relying on imperfect quantitative proxies? Today’s guest calls this future “weird”. Benn Stancil is the Field CTO at ThoughtSpot. He joined ThoughtSpot in 2023 as part of its acquisition of Mode, where he was a Co-Founder and CTO. While at Mode, Benn held roles leading Mode’s data, product, marketing, and executive teams. He regularly writes about data and technology at benn.substack.com. Prior to founding Mode, Benn worked on analytics teams at Microsoft and Yammer. Throughout the episode, Benn and Adel talk about the nature of AI-assisted analytics workflows, the potential for generative AI in assisting problem-solving, how he imagines analytics workflows to look in the future, and a lot more. About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: Mode AnalyticsThoughtSpot acquires Mode: Empowering data teams to bring Generative AI to BIEverybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are[Course] Generative AI for Business[Skill Track] SQL FundamentalsRelated Episode: The Future of Marketing Analytics with Cory Munchbach, CEO at...
We are in a Generative AI hype cycle. Every executive looking at the potential generative AI today is probably thinking about how they can allocate their department's budget to building some AI use cases. However, many of these use cases won't make it into production. In a similar vein, the hype around machine learning in the early 2010s led to lots of hype around the technology, but a lot of the value did not pan out. Four years ago, VentureBeat showed that 87% of data science projects did not make it into production. And in a lot of ways, things haven’t gotten much better. And if we don't learn why that is the case, generative AI could be destined to a similar fate. Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI World, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, as well as The AI Playbook: Mastering the Rare Art of Machine Learning Deployment. Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching graduate computer science courses in ML and AI. Later, he served as a business school professor at UVA Darden. Eric also publishes op-eds on analytics and social justice. In the episode, Adel and Eric explore the reasons why machine learning projects don't make it into production, the BizML Framework or how to bring business stakeholders into the room when building machine learning use cases, the skill gap between business stakeholders and data practitioners, use cases of organizations have leveraged machine learning for operational improvements, what the previous machine learning hype cycle can teach us about generative AI and a lot more. Links Mentioned in the Show: The AI Playbook: Mastering the Rare Art of Machine Learning Deployment by Eric SiegelGenerating ROI with AIBizML Cheat SheetGooderSurvey: Machine Learning Projects Still Routinely Fail to Deploy[Skill Track] MLOps Fundamentals
Arianna Huffington, co-founder of The Huffington Post, woke up in a pool of blood nursing a broken cheekbone after collapsing at her desk in 2007. Various stresses and pressures in her life had manifested themself into an episode of extreme mental exhaustion. This event was the catalyst for her to write a book on well-being as well as start the behavioral-change company Thrive Global. Many of us have, or will, experience burnout at some point. The build-up of stress, negative emotions, and internal tension may not result in the same shocking scene Huffington found herself in, but its effects are serious and permeate not just through our profession but into our home life as well. Stress and burnout are especially prevalent in working environments where there is an emphasis on urgency, and with the constant advancements we’ve seen in the data & AI sphere in the past year, leaders and practitioners working in the data space will need to know how to recognize the symptoms of burnout and create workplace cultures that prevent burnout in the first place. Jen Fisher is Deloitte’s human sustainability leader. Previously, Fisher served as Deloitte’s first-ever chief well-being officer. She’s also a TEDx speaker, coauthor of the book, Work Better Together: How to Cultivate Strong Relationships to Maximize Well-Being and Boost Bottom Lines, editor-at-large for Thrive Global, and host of the “WorkWell” podcast series. In the episode, Jen and Adel cover Jen’s own personal experience with burnout, the role of a Chief Wellbeing Officer, the impact of work on our overall well-being, the patterns that lead to burnout, defining well-being in the workplace, technology’s impact on our well-being, psychological safety in the workplace, how managers and leaders can looking after themselves and their teams, the future of human sustainability in the workplace and much more. Links Mentioned in the Show: Work Better Together: How to Cultivate Strong Relationships to Maximize Well-Being and Boost Bottom LinesJen’s TED Talk: The Future of WorkBrené Brown: Clear Is Kind. Unclear Is Unkind.What Is Psychological Safety?
Effective data management has become a cornerstone of success in our digital era. It involves not just collecting and storing information but also organizing, securing, and leveraging data to drive progress and innovation. Many organizations turn to tools like Snowflake for advanced data warehousing capabilities. However, while Snowflake enhances data storage and access, it's not a complete solution for all data management challenges. To address this, tools like Capital One’s Slingshot can be used alongside Snowflake, helping to optimize costs and refine data management strategies. Salim Syed is a VP, Head of engineering for Capital One Slingshot product. He led Capital One’s data warehouse migration to AWS and is a specialist in deploying Snowflake to a large enterprise. Salim’s expertise lies in developing Big Data (Lake) and Data Warehouse strategy on the public cloud. He leads an organization of more than 100 data engineers, support engineers, DBAs and full stack developers in driving enterprise data lake, data warehouse, data management and visualization platform services. Salim has more than 25 years of experience in the data ecosystem. His career started in data engineering where he built data pipelines and then moved into maintenance and administration of large database servers using multi-tier replication architecture in various remote locations. He then worked at CodeRye as a database architect and at 3M Health Information Systems as an enterprise data architect. Salim has been at Capital One for the past six years. In this episode, Adel and Salim explore cloud data management and the evolution of Slingshot into a major multi-tenant SaaS platform, the shift from on-premise to cloud-based data governance, the role of centralized tooling, strategies for effective cloud data management, including data governance, cost optimization, and waste reduction as well as insights into navigating the complexities of data infrastructure, security, and scalability in the modern digital era. Links Mentioned in the Show: Capital One SlingshotSnowflakeCourse: Introduction to Data WarehousingCourse: Introduction to Snowflake
We are all guilty of getting excited about shiny new toys in whatever guise they present themselves to us. For many of us, lots of the recent shiny new toys have been ways of utilizing AI to update and iterate on the ways that we work. Leadership teams have been looking for ways that their organizations can incorporate AI solutions into their products, regardless of whether they might be the most valuable use of the company's time. A company that fails to incorporate new tools and technology will stagnate and fail altogether right? A failure to adapt to the new state of play will surely stop the company from becoming a high performer? Or will it? What sets apart high-performing organizations from their non high-performing counterparts? It’s not shiny new toys. It’s culture. Counter to conventional wisdom, the norms and beliefs of an organization, and not the technology and tools it uses, is what drives its performance. Andrew McAfee is a Principal Research Scientist at the MIT Sloan School of Management, co-founder and co-director of MIT’s Initiative on the Digital Economy, and the inaugural Visiting Fellow at the Technology and Society organization at Google. He studies how technological progress changes the world. His book, The Geek Way, reveals a new way to get big things done. His previous books include More from Less and, with Erik Brynjolfsson, The Second Machine Age. McAfee has written for publications including Foreign Affairs, Harvard Business Review, The Economist, The Wall Street Journal, and The New York Times. He's talked about his work on CNN and 60 Minutes, at the World Economic Forum, TED, and the Aspen Ideas Festival, with Tom Friedman and Fareed Zakaria, and in front of many international and domestic audiences. He’s also advised many of the world’s largest corporations and organizations ranging from the IMF to the Boston Red Sox to the US Intelligence Community. Throughout the episode, Adel and Andrew explore the four cultural norms of the Geek way, the evolutionary biological underpinnings of the traits high performing organizations exhibit, case studies in adapting organizational culture, the role of data in driving high performance teams, useful frameworks leaders can adopt to build high performing organizations, and a lot more. Link mentioned in the show: The Geek Way: The Radical Mindset That Drives Extraordinary Results by Andrew McAfeeThe Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies by Andrew McAfee and Erik BrynjolfssonThe Planning FallacyAnnie DukeSteven PinkerAdam Grant
I think it's safe to say that we are in the peak of the hype cycle with generative AI. Almost every week now, we see new startups with exciting new GenAI use-cases and products. However, exciting doesn't necessarily translate to useful. And now more than ever, it's important for leaders, whether at incumbents or startups, to adapt and drive value with generative AI and focus on useful use-cases. So how can they adapt well to these tectonic changes? Jason Feifer is the editor in chief of Entrepreneur magazine and host of the podcast Problem Solvers. Outside of Entrepreneur, he is the author of the book Build For Tomorrow, which helps readers find new opportunities in times of change, and co-hosts the podcast Help Wanted, where he helps solve listeners' work problems. He also writes a newsletter called One Thing Better, which each week gives you one better way to build a career or company you love. In the episode, Jason and Adel explore AI’s role in entrepreneurship, use cases and applications of AI, the effectiveness of certain AI tools, AI’s impact on established business models, frameworks for navigating change, advice for leaders and individuals on using AI in their work and much more. Links Mentioned in the Show: Build for Tomorrow by Jason FeiferOne Thing Better NewsletterHeyGenBurger King Accepting Credit Cards in the 90s[COURSE] Implementing AI Solutions in Business
In today's AI landscape, organizations are actively exploring how to seamlessly embed AI into their products, systems, processes, and workflows. The success of ChatGPT stands as a testament to this. Its success is not solely due to the performance of the underlying model; a significant part of its appeal lies in its human-centered user experience, particularly its chat interface. Beyond the foundational skills, infrastructure, and tools, it's clear that great design is a crucial ingredient in building memorable AI experiences. How do you build human-centered AI experiences? What is the role of design in driving successful AI implementations? How can data leaders and practitioners adopt a design lens when building with AI? Here to answer these questions is Haris Butt, Head of Product Design at ClickUp. ClickUp is a project management tool that's been making a big bet on AI, and Haris plays a key role in shaping how AI is embedded within the platform. Throughout the episode, Adel & Haris spoke about the role of design in driving human-centered AI experiences, the iterative process of designing with large language models, how to design AI experiences that promote trust, how designing for AI differs from traditional software, whether good design will ultimately end up killing prompt engineering, and a lot more.
For the past few years, we've seen the importance of data literacy and why organizations must invest in a data-driven culture, mindset, and skillset. However, as generative AI tools like ChatGPT have risen to prominence in the past year, AI literacy has never been more important. But how do we begin to approach AI literacy? Is it an extension of data literacy, a complement, or a new paradigm altogether? How should you get started on your AI literacy ambitions? Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is a data analytics, AI, and BI thought leader and an expert with a flair for bridging business needs with technology. As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.
Cindi was previously a Gartner Research Vice President, the lead author for the data and analytics maturity model and analytics and BI Magic Quadrant, and a popular keynote speaker. She introduced new research in data and AI for good, NLP/BI Search, and augmented analytics, bringing both BI bake-offs and innovation panels to Gartner globally. She’s frequently quoted in MIT, Harvard Business Review, and Information Week. She is rated a top 12 influencer in big data and analytics by Analytics Insight, Onalytca, Solutions Review, and Humans of Data.
In the episode, Cindi and Adel discuss how generative AI accelerates an organization’s data literacy, how leaders can think beyond data literacy and start to think about AI literacy, the importance of responsible use of AI, how to best communicate the value of AI within your organization, what generative AI means for data teams, AI use-cases in the data space, the psychological barriers blocking AI adoption, and much more.
Links Mentioned in the Show: The Data Chief Podcast ThoughtSpot Sage BloombergGPT Radar: Data & AI Literacy Course: AI Ethics Course: Generative AI Concepts Course: Implementing AI Solutions in Business
'Software is eating the world’ is a truism coined by Mark Andreesen, General Partner at Andreesen Horowitz. This was especially evident during the shift from analog mediums to digital at the turn of the century. Software companies have essentially usurped and replaced their non-digital predecessors. Amazon was the largest bookseller, Netflix was the largest movie "rental" service, Spotify or Apple were the largest music providers. Today, AI is starting to eat the world. However, we are still at the early start of the AI revolution, with AI set to become embedded in almost every piece of software we interact with. An AI ecosystem that touches every aspect of our lives is what today’s guest describes as ‘Ambient AI’. But what can we expect from this ramp up to Ambient AI? How will it change the way we work? What do we need to be mindful of as we develop this technology? Daniel Jeffries is the Managing Director of the AI Infrastructure Alliance and former CIO at Stability AI, the company responsible for Stable Diffusion, the popular open-source image generation model. He’s also an author, engineer, futurist, pro blogger and he’s given talks all over the world on AI and cryptographic platforms. In the episode, Adel and Daniel discuss how to define ambient AI, how our relationship with work will evolve as we become more reliant on AI, what the AI ecosystem is missing to rapidly scale adoption, why we need to accelerate the maturity of the open source AI ecosystem, how AI existential risk discourse takes away focus from real AI risk, and a lot lot more.
Links Mentioned in the Show Daniel’s Writing on MediumDaniel’s SubstackAI Infrastructure AllianceStability AIFrancois CholletRed Pajama DatasetRun AIWill Superintelligent AI End the World? By Eliezer Yudkowsky Nick Bostrom’s Paper Clip MaximizerThe pessimist archive [Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business
In this episode of DataFramed, Adel speaks with Maria Luciana Axente, Responsible AI and AI for Good Lead at PwC UK on the state and future of responsible AI.Throughout the episode, Maria talks about her background, the differences & intersections between "AI ethics" and "Responsible AI", the state of responsible AI adoption within organizations, the link between responsible AI and organizational culture, what data scientists can do today to ensure they're part of their organization's responsible AI journey, and more. Relevant links from the interview:
Connect with Maria on LinkedInKate Crawford's Atlas of AI9 Ethical AI Principles for Organizations to FollowPwC's Responsible AI ToolkitRead our Data Literacy for Responsible AI White Paper
In this episode of DataFramed, Adel speaks with Alessya Visnjic, CEO and co-founder of WhyLabs, an AI Observability company on a mission to build the interface between AI and human operators. Throughout the episode, Alessya talks about the unique challenges data teams face when operationalizing machine learning that spurred the need for MLOps, how MLOps intersects and diverges with different terms such as DataOps, ModelOps, and AIOps, how and when organizations should get started on their MLOps journey, the most important components of a successful MLOps practice, and more.
Relevant links from the interview:
Connect with Alessya on LinkedInAndrew Ng on the important of being data-centricJoe Reis on the data culture and all things datawhylogs: the standard for data logging — please send you feedback, contribute, help us build integrations into your favorite data tools and extend the concept of logging to new data types. Join the effort of building a new open standard for data logging!Try the WhyLabs platform
In this episode of DataFramed, Adel speaks with Sudaman Thoppan Mohanchandralal, Regional Chief Data, and Analytics Officer at Allianz Benelux, on the importance of building data cultures and his experiences operationalizing data culture transformation programs.Throughout the episode, Sudaman talks about his background, the Chief Data Officer’s mandate and how it has evolved over the years, how organizations should prioritize building data cultures, the science behind culture change, the importance of executive data literacy when scaling value from data, and more.
Relevant links from the interview:
Connect with Sudaman on LinkedInCheck out Sudaman’s Webinar on DataCampWhy Data Culture Matters
In this episode of DataFramed, Adel speaks with Elad Cohen, VP of Data Science and Research at Riskified on how data science is being used to combat fraud in eCommerce.Throughout the episode, Elad talks about his background, the plethora of data science use-cases in eCommerce, how Riskified builds state-of-the-art fraud detection models, common pitfalls data teams face, his best practices gaining organizational buy-in for data projects, how data scientists should focus on value, whether they should have engineering skills, and more.
Relevant links from the interview:
Connect with Elad on LinkedInRegister for our upcoming webinarsHow Riskified chooses what to research
In this episode of DataFramed, Adel speaks with Barr Moses, CEO, and co-founder of Monte Carlo on the importance of data quality and how data observability creates trust in data throughout the organization.
Throughout the episode, Barr talks about her background, the state of data-driven organizations and what it means to be data-driven, the data maturity of organizations, the importance of data quality, what data observability is, and why we’ll hear about it more often in the future. She also covers the state of data infrastructure, data meshes, and more.
Relevant links from the interview:
Connect with Barr on LinkedInLearn more about data meshesCheck out the Monte Carlo blogDataCamp's Guide to Organizational Data Maturity
In this episode of DataFramed, Adel speaks with Sergey Fogelson, Vice President of Data Science and Modeling at Viacom on how data science has evolved over the past decade, and the remaining large-scale challenges facing data teams today.
Throughout the episode, Sergey deep-dives into his background, the various projects he’s been involved with throughout his career, the most exciting advances he’s seen in the data science space, the largest challenges facing data teams today, best practices democratizing data, the importance of learning SQL, and more.
Relevant links from the interview:
Connect with Sergey on LinkedInCheck out Sergey’s course on DataCampLearn more about AirflowLearn more about PySparkLearn more about SQL
More resources from DataCamp
Upskill your team with DataCampOur Guide on Open Source Software in Data ScienceYour Organization’s Guide to Data Maturity
In this episode of DataFramed, Adel speaks with Dan Becker, CEO of decision.ai and founder of Kaggle Learn on the intersection of decision sciences and AI, and best practices when aligning machine learning to business value.
Throughout the episode, Dan deep-dives into his background, how he reached the top of a Kaggle competition, the difference between machine learning in a Kaggle competition and the real world, the role of empathy when aligning machine learning to business value, the importance of decisions sciences when maximizing the value of machine learning in production, and more.
Links:
Follow Dan on TwitterFollow Dan on LinkedInWhat 70% of data science learners do wrongCheck out Dan’s course on DataCampdecision.aiDan’s climate dashboard
In this episode of DataFramed, Adel speaks with Amen Ra Mashariki, principal scientist at Nvidia and the former Chief Analytics Officer of the City of New York on how data science is done in government agencies, and how it's driving smarter cities all around us.
Throughout the episode, Amen deep-dives into the use-cases he worked on to make the city of New York smarter, how data science allows cities to become more reactive and proactive, the unique challenges of scaling data science in a government setting, the friction between providing value and data privacy and ethics, the state of data literacy in government, and more.
Links from the interview:
Follow Amen on LinkedInFollow Amen on TwitterThe New York City Business AtlasHurricane Sandy FEMA After-Action ReportData Drills