talk-data.com talk-data.com

Topic

BI

Business Intelligence (BI)

data_visualization reporting analytics

1211

tagged

Activity Trend

111 peak/qtr
2020-Q1 2026-Q1

Activities

1211 activities · Newest first

AI/BI Driving Speed to Value in Supply Chain

Conagra is a global food manufacturer with $12.2B in revenue, 18K+ employees, 45+ plants in US, Canada and Mexico. Conagra's Supply Chain organization is heavily focused on delivering results in productivity, waste reduction, inventory rationalization, safety and customer service levels. By migrating the Supply Chain reporting suite to Databricks over the past 2 years, Conagra's Supply Chain Analytics & Data Science team has been able to deliver new AI solutions which complement traditional BI platforms and lay the foundation for additional AI/ML applications in the future. With Databricks Genie integrated within traditional BI reports, Conagra Supply Chain users can now go from insight to action faster and with fewer clicks, enabling speed to value in a complex Supply Chain. The Databricks platform also allows the team to curate data products to be consumed by traditional BI applications today as well as the ability to rapidly scale for the AI/ML applications of tomorrow.

How to Get the Most Out of Your BI Tools on Databricks

Unlock the full potential of your BI tools with Databricks. This session explores how features like Photon, Databricks SQL, Liquid Clustering, AI/BI Genie and Publish to Power BI enhance performance, scalability and user experience. Learn how Databricks accelerates query performance, optimizes data layouts and integrates seamlessly with BI tools. Gain actionable insights and best practices to improve analytics efficiency, reduce latency and drive better decision-making. Whether migrating from a data warehouse or optimizing an existing setup, this talk provides the strategies to elevate your BI capabilities.

In today's rapidly evolving digital landscape, organizations must prioritize robust data architectures and AI strategies to remain competitive. In this session, we will explore how Procter & Gamble (P&G) has embarked on a transformative journey to digitize its operations via scalable data, analytics and AI platforms, establishing a strong foundation for data-driven decision-making and the emergence of agentic AI.Join us as we delve into the comprehensive architecture and platform initiatives undertaken at P&G to create scalable and agile data platforms unleashing BI/AI value. We will discuss our approach to implementing data governance and semantics, ensuring data integrity and accessibility across the organization. By leveraging advanced analytics and Business Intelligence (BI) tools, we will illustrate how P&G harnesses data to generate actionable insights at scale, all while maintaining security and speed.

Sponsored by: dbt Labs | Empowering the Enterprise for the Next Era of AI and BI

The next era of data transformation has arrived. AI is enhancing developer workflows, enabling downstream teams to collaborate effectively through governed self-service. Additionally, SQL comprehension is producing detailed metadata that boosts developer efficiency while ensuring data quality and cost optimization. Experience this firsthand with dbt’s data control plane, a centralized platform that provides organizations with repeatable, scalable, and governed methods to succeed with Databricks in the modern age.

Accelerating Analytics: Integrating BI and Partner Tools to Databricks SQL

This session is repeated. Did you know that you can integrate with your favorite BI tools directly from Databricks SQL? You don’t even need to stand up an additional warehouse. This session shows the integrations with Microsoft Power Platform, Power BI, Tableau and dbt so you can have a seamless integration experience. Directly connect your Databricks workspace with Fabric and Power BI workspaces or Tableau to publish and sync data models, with defined primary and foreign keys, between the two platforms.

Easy Ways to Optimize Your Databricks Costs

In this session, we will explore effective strategies for optimizing costs on the Databricks platform, a leading solution for handling large-scale data workloads. Databricks, known for its open and unified approach, offers several tools and methodologies to ensure users can maximize their return on investment (ROI) while managing expenses efficiently. Key points: Understanding usage with AI/BI tools Organizing costs with tagging Setting up budgets Leveraging System Tables By the end of this session, you will have a comprehensive understanding of how to leverage Databricks' built-in tools for cost optimization, ensuring that their data and AI projects not only deliver value but do so in a cost-effective manner. This session is ideal for data engineers, financial analysts, and decision-makers looking to enhance their organization’s efficiency and financial performance through strategic cost management on Databricks.

Sponsored by: Qlik | Turning Data into Business Impact: How to Build AI-Ready, Trusted Data Products on Databricks

Explore how to build use case-specific data products designed to power everything from traditional BI dashboards to machine learning and LLM-enabled applications. Gain an understanding of what data products are and why they are essential for delivering AI-ready data that is integrated, timely, high-quality, secure, contextual, and easily consumable. Discover strategies for unlocking business data from source systems to enable analytics and AI use cases, with a deep dive into the three-tiered data product architecture: the Data Product Engineering Plane (where data engineers ingest, integrate, and transform data), the Data Product Management Plane (where teams manage the full lifecycle of data products), and the Data Product Marketplace Plane (where consumers search for and use data products). Discover how a flexible, composable data architecture can support organizations at any stage of their data journey and drive impactful business outcomes.

Transforming Government With Data and AI: Singapore GovTech's Journey With Databricks

GovTech is an agency in the Singapore Government focused on tech for good. The GovTech Chief Data Office (CDO) has built the GovTech Data Platform with Databricks at the core. As the government tech agency, we safeguard national-level government and citizen data. A comprehensive data strategy is essential to uplifting data maturity. GovTech has adopted the service model approach where data services are offered to stakeholders based on their data maturity. Their maturity is uplifted through partnership, readying them for more advanced data analytics. CDO offers a plethora of data assets in a “data restaurant” ranging from raw data to data products, all delivered via Databricks and enabled through fine-grained access control, underpinned by data management best practices such as data quality, security and governance. Within our first year on Databricks, CDO was able to save 8,000 man-hours, democratize data across 50% of the agency and achieve six-figure savings through BI consolidation.

Today, I’m responding to a listener's question about what it takes to succeed as a data or AI product manager, especially if you’re coming from roles like design/BI/data visualization, data science/engineering, or traditional software product management. This reader correctly observed that most of my content “seems more targeted at senior leadership” — and had asked if I could address this more IC-oriented topic on the show. I’ll break down why technical chops alone aren’t enough, and how user-centered thinking, business impact, and outcome-focused mindsets are key to real success — and where each of these prior roles brings strengths and/or weaknesses. I’ll also get into the evolving nature of PM roles in the age of AI, and what I think the super-powered AI product manager will look like.

Highlights/ Skip to:

Who can transition into an AI and data product management role? What does it take? (5:29) Software product managers moving into  AI product management (10:05) Designers moving into data/AI product management (13:32) Moving into the AI PM role from the engineering side (21:47) Why the challenge of user adoption and trust is often the blocker to the business value (29:56) Designing change management into AI/data products as a skill (31:26) The challenge of value creation vs. delivery work — and how incentives are aligned for ICs  (35:17) Quantifying the financial value of data and AI product work(40:23)

Quotes from Today’s Episode

“Who can transition into this type of role, and what is this role? I’m combining these two things. AI product management often seems closely tied to software companies that are primarily leveraging AI, or trying to, and therefore, they tend to utilize this AI product management role. I’m seeing less of that in internal data teams, where you tend to see data product management more, which, for me, feels like an umbrella term that may include traditional analytics work, data platforms, and often AI and machine learning. I’m going to frame this more in the AI space, primarily because I think AI tends to capture the end-to-end product than data product management does more frequently.” — Brian (2:55)

“There are three disciplines I’m going to talk about moving into this role. Coming into AI and data PM from design and UX, coming into it from data engineering (or just broadly technical spaces), and then coming into it from software product management. I think software product management and moving into the AI product management - as long as you’re not someone that has two years of experience, and then 18 years of repeating the second year of experience over and over again - and you’ve had a robust product management background across some different types of products; you can show that the domain doesn’t necessarily stop you from producing value. I think you will have the easiest time moving into AI product management because you’ve shown that you can adapt across different industries.” - Brian (9:45)

“Let’s talk about designers next. I’m going to include data visualization, user experience research, user experience design, product design, all those types of broad design, category roles. Moving into data and/or AI product management, first of all, you don’t see too many—I don’t hear about too many designers wanting to move into DPM roles, because oftentimes I don’t think there’s a lot of heavy UI and UX all the time in that space. Or at least the teams that are doing that work feel that’s somebody else’s job because they’re not doing end-to-end product thinking the way I talk about it, so therefore, a lot of times they don’t see the application, the user experience, the human adoption, the change management, they’re just not looking at the world that way, even though I think they should be.” - Brian (13:32)

“Coming at this from the data and engineering side, this is the classic track for data product management. At least that is the way I tend to see it. I believe most companies prefer to develop this role in-house. My biggest concern is that you end up with job title changes, but not necessarily the benefits that are supposed to come with this. I do like learning by doing, but having a coach and someone senior who can coach your other PMs is important because there’s a lot of information that you won’t necessarily get in a class or a course. It’s going to come from experience doing the work.” - Brian (22:26)

“This value piece is the most important thing, and I want to focus on that. This is something I frequently discuss in my training seminar: how do we attach financial value to the work we’re doing? This is both art and science, but it’s a language that anyone in a product management role needs to be comfortable with. If you’re finding it very hard to figure out how your data product contributes financial value because it’s based on this waterfalling of “We own the model, and it’s deployed on a platform.” The platform then powers these other things, which in turn power an application. How do we determine the value of our tool? These things are challenging, and if it’s challenging for you, guess how hard it will be for stakeholders downstream if you haven’t had the practice and the skills required to understand how to estimate value, both before we build something as well as after?” - Brian (31:51)

“If you don’t want to spend your time getting to know how your business makes money or creates value, then [AI and data product management work] is not for you. It’s just not. I would stay doing what you’re doing already or find a different thing because a lot of your time is going to be spent “managing up” for half the time, and then managing the product stuff “down.” Then, sitting in this middle layer, trying to explain to the business what’s going to come out and what the impact is going to be, in language that they care about and understand. You can't be talking about models, model accuracy, data pipelines, and all that stuff. They’re not going to care about any of that. - Brian (34:08)

In this course, you’ll learn how to use the features Databricks provides for business intelligence needs: AI/BI Dashboards and AI/BI Genie. As a Databricks Data Analyst, you will be tasked with creating AI/BI Dashboards and AI/BI Genie Spaces within the platform, managing the access to these assets by stakeholders and necessary parties, and maintaining these assets as they are edited, refreshed, or decommissioned over the course of their lifespan. This course intends to instruct participants on how to design dashboards for business insights, share those with collaborators and stakeholders, and maintain those assets within the platform. Participants will also learn how to utilize AI/BI Genie Spaces to support self-service analytics through the creation and maintenance of these environments powered by the Databricks Data Intelligence Engine. Pre-requisites: The content was developed for participants with these skills/knowledge/abilities: A basic understanding of SQL for querying existing data tables in Databricks. Prior experience or basic familiarity with the Databricks Workspace UI. A basic understanding of the purpose and use of statistical analysis results. Familiarity with the concepts around dashboards used for business intelligence. Labs: Yes

Data Warehousing with Databricks

This course is designed for data professionals who want to explore the data warehousing capabilities of Databricks. Assuming no prior knowledge of Databricks, it provides an introduction to leveraging Databricks as a modern cloud-based data warehousing solution. Learners will explore how use the Databricks Data Intelligence Platform to ingest, transform, govern, and analyze data efficiently. Learners will also explore Genie, an innovative Databricks feature that simplifies data exploration through natural language queries. By the end of this course, participants will be equipped with the foundational skills to implement and optimize a data warehouse using Databricks. Pre-requisites: Basic understanding of SQL and data querying concepts General knowledge of data warehousing concepts, including tables, schemas, and ETL/ELT processes is recommended Some experience with BI and/or data visualization tools is helpful but not required Labs: Yes

AI/BI for Self-Service Analytics

In this course, you will learn how to self-serve business insights from your company’s Databricks Data Intelligence Platform using AI/BI. After a tour of the fundamental components of the platform, you’ll learn how to interact with pre-created AI/BI Dashboards to explore your company’s data through existing charts and visualizations. You’ll also learn how to use AI/BI Genie to go beyond dashboards by asking follow-up questions in natural language to self-serve new insights, create visualizations, and share them with your colleagues. Pre-requisites: A working understanding of your organization’s business and key performance indicators. Labs: No Certification Path: N/A

Analytics is experiencing another monumental change. Just as visual drag and drop BI tools and augmented insights led to changes in analytics delivery, we now experience conversational interfaces, automated workflows and AI agents that cause us to rethink how analytics will be done. Join this session to learn the new technologies that are making an impact and how this will affect plans for future investment in analytics tools, platforms and solutions.

D&A value is not possible without data storytelling that offers a better way to engage communication findings than just BI reporting or data science notebooks. Join this session to know about the fundamentals of data storytelling and how to fill the gap between data science speakers and decision makers. It further discusses how to tell the best data storytelling and how to upscale data storytelling for future in landscape of GenAI.

D&A value is not possible without data storytelling that offers a better way to engage communication findings than just BI reporting or data science notebooks. Join this session to know about the fundamentals of data storytelling and how to fill the gap between data science speakers and decision makers. It further discusses how to tell the best data storytelling and how to upscale data storytelling for future in landscape of GenAI.

Smarter Demand Planning: How to Build a No-Code Forecasting App | The Data Apps Conference

Sales forecasting and demand planning are critical business processes, but most organizations still rely on spreadsheets—leading to version control issues, fragmented approvals, and lack of historical tracking. Traditional BI tools struggle to solve these problems because they don’t allow for cell-level edits, inline comments, and structured approval workflows in a governed way.

In this session, Ian Reed will demonstrate how to:

Enable real-time forecasting by replacing manual spreadsheets with a structured, cloud-based data app Allow for cell-level edits and inline commentary so teams can capture assumptions behind forecast changes Implement an automated approval workflow with proper governance Integrate seamlessly with live data sources for continuous updates and visibility into actual vs. forecasted performance Track historical changes and maintain audit trails of all modifications

With Sigma, demand planning is no longer a fragmented, error-prone process—it’s a seamless, governed workflow that scales with business growth. Join this session for a demo and a step-by-step walkthrough of how this app was built, proving that anyone can create a highly customizable, enterprise-grade demand planning system in Sigma without deep technical expertise.

➡️ Learn more about Data Apps: https://www.sigmacomputing.com/product/data-applications?utm_source=youtube&utm_medium=organic&utm_campaign=data_apps_conference&utm_content=pp_data_apps


➡️ Sign up for your free trial: https://www.sigmacomputing.com/go/free-trial?utm_source=youtube&utm_medium=video&utm_campaign=free_trial&utm_content=free_trial

sigma #sigmacomputing #dataanalytics #dataanalysis #businessintelligence #cloudcomputing #clouddata #datacloud #datastructures #datadriven #datadrivendecisionmaking #datadriveninsights #businessdecisions #datadrivendecisions #embeddedanalytics #cloudcomputing #SigmaAI #AI #AIdataanalytics #AIdataanalysis #GPT #dataprivacy #python #dataintelligence #moderndataarchitecture

Rapid changes demand innovative decision-making tools beyond traditional methods. Businesses are turning to AI, BI, and data science to gain a competitive edge. The perfect blend of these technologies can be a true differentiator.

Take a quick look at what to expect from this session:
-Challenges in data and analytics today
-Unlocking the power of AI, BI, and data science
-The transformative role of AI-powered self-service BI platforms
-Live demos of next-generation analytics in action

Learn how these innovations can drive better decisions to deliver transformative business outcomes.

Behavioural data is fast becoming a cornerstone of modern business strategy. Not just for media measurement or advertising optimisation, but across product, pricing, logistics, and platform development. It tells us what people actually do, not just what they say they do. As traditional market research struggles with low engagement and recall bias, brands are turning to digital behavioural data to make sharper, faster decisions. Whether it's tracking consumer journeys in the app economy or identifying early adoption trends (like the impact of AI tools on category disruption), the value lies in real, observable behaviour at scale. But, that shift raises new questions around data ownership, consent, and fairness. And, the rise of AI is only accelerating both the opportunity and the complexity. In the latest episode of Hub & Spoken, Jason Foster, CEO & Founder of Cynozure, speaks to Chris Havemann, CEO of RealityMine, and discusses everything from: The transition from survey-based research to behavioural data analysis The impact of AI on interpreting digital interactions Ethical considerations surrounding data consent and transparency Building trust through clear data collection and usage practices Learn from Chris's 25+ years in data and insight, and explore how behavioural signals are reshaping everything from media to market intelligence. ****    Cynozure is a leading data, analytics and AI company that helps organisations to reach their data potential. It works with clients on data and AI strategy, data management, data architecture and engineering, analytics and AI, data culture and literacy, and data leadership. The company was named one of The Sunday Times' fastest-growing private companies in both 2022 and 2023 and recognised as The Best Place to Work in Data by DataIQ in 2023 and 2024. Cynozure is a certified B Corporation. 

Summary In this episode of the Data Engineering Podcast, host Tobias Macy welcomes back Shinji Kim to discuss the evolving role of semantic layers in the era of AI. As they explore the challenges of managing vast data ecosystems and providing context to data users, they delve into the significance of semantic layers for AI applications. They dive into the nuances of semantic modeling, the impact of AI on data accessibility, and the importance of business logic in semantic models. Shinji shares her insights on how SelectStar is helping teams navigate these complexities, and together they cover the future of semantic modeling as a native construct in data systems. Join them for an in-depth conversation on the evolving landscape of data engineering and its intersection with AI.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Your host is Tobias Macey and today I'm interviewing Shinji Kim about the role of semantic layers in the era of AIInterview IntroductionHow did you get involved in the area of data management?Semantic modeling gained a lot of attention ~4-5 years ago in the context of the "modern data stack". What is your motivation for revisiting that topic today?There are several overlapping concepts – "semantic layer," "metrics layer," "headless BI." How do you define these terms, and what are the key distinctions and overlaps?Do you see these concepts converging, or do they serve distinct long-term purposes?Data warehousing and business intelligence have been around for decades now. What new value does semantic modeling beyond practices like star schemas, OLAP cubes, etc.?What benefits does a semantic model provide when integrating your data platform into AI use cases?How is it different between using AI as an interface to your analytical use cases vs. powering customer facing AI applications with your data?Putting in the effort to create and maintain a set of semantic models is non-zero. What role can LLMs play in helping to propose and construct those models?For teams who have already invested in building this capability, what additional context and metadata is necessary to provide guidance to LLMs when working with their models?What's the most effective way to create a semantic layer without turning it into a massive project? There are several technologies available for building and serving these models. What are the selection criteria that you recommend for teams who are starting down this path?What are the most interesting, innovative, or unexpected ways that you have seen semantic models used?What are the most interesting, unexpected, or challenging lessons that you have learned while working with semantic modeling?When is semantic modeling the wrong choice?What do you predict for the future of semantic modeling?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links SelectStarSun MicrosystemsMarkov Chain Monte CarloSemantic ModelingSemantic LayerMetrics LayerHeadless BICubePodcast EpisodeAtScaleStar SchemaData VaultOLAP CubeRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeKNN == K-Nearest NeighbersHNSW == Hierarchical Navigable Small Worlddbt Metrics LayerSoda DataLookMLHexPowerBITableauSemantic View (Snowflake)Databricks GenieSnowflake Cortex AnalystMalloyThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA