After 1,500+ conversations with CDOs and VPs of data , guest Malcolm Hawker noticed a disturbing pattern: a "limiting mindset" that causes data leaders to fail. He argues that too many leaders blame external factors such as "culture" , "data literacy", or a lack of support rather than taking accountability for delivering value. In this conversation, Malcolm breaks down how this mindset is reinforced by the analyst and consultant community and why it leads to a "value fatigue" where no one can prove their own ROI. He offers a clear path forward, starting with a simple 3-question framework for any new CDO and explains why "culture" is actually an outcome of delivering value, not a prerequisite for it. We also discuss his new book, "The Data Hero Playbook," tackle the "AI Ready" myth , explaining why conflating it with "BI Ready" is holding companies back and why your data is likely "good enough" to start right now.
talk-data.com
Topic
BI
Business Intelligence (BI)
357
tagged
Activity Trend
Top Events
In this show, we're joined by Sean Chandler, Director of BI at CenterWell Home Health, to explore what it really means to thrive in BI today. Sean shares his personal journey, including his move into teaching, and offers practical insights on building a career in BI, self-learning for advancement, and fostering a strong partnership between BI and data science teams. Whether you're an aspiring BI analyst, a data scientist aiming to improve collaboration, or a career changer eyeing the BI space, this episode is for you. What You'll Learn: How to successfully transition from other roles into BI, and how to know if it's the right fit for you What good collaboration between BI and data science actually looks like, and how to recognize when it's broken How self-taught skills can accelerate your BI career, even without a formal background 🤝 Follow Sean on LinkedIn! Register for free to be part of the next live session: https://bit.ly/3XB3A8b Follow us on Socials: LinkedIn YouTube Instagram (Mavens of Data) Instagram (Maven Analytics) TikTok Facebook Medium X/Twitter
Ryan Dolley, VP of Product Strategy at GoodData and co-host of Super Data Brothers podcast, joined Yuliia and Dumke to discuss the DBT-Fivetran merger and what it signals about the modern data stack's consolidation phase. After 16 years in BI and analytics, Ryan explains why BI adoption has been stuck at 27% for a decade and why simply adding AI chatbots won't solve it. He argues that at large enterprises, purchasing new software is actually the only viable opportunity to change company culture - not because of the features, but because it forces operational pauses and new ways of working. Ryan shares his take that AI will struggle with BI because LLMs are trained to give emotionally satisfying answers rather than accurate ones. Ryan Dolley linkedin
Summary In this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Nick Schrock, CTO and founder of Dagster Labs, to discuss Compass - a Slack-native, agentic analytics system designed to keep data teams connected with business stakeholders. Nick shares his journey from initial skepticism to embracing agentic AI as model and application advancements made it practical for governed workflows, and explores how Compass redefines the relationship between data teams and stakeholders by shifting analysts into steward roles, capturing and governing context, and integrating with Slack where collaboration already happens. The conversation covers organizational observability through Compass's conversational system of record, cost control strategies, and the implications of agentic collaboration on Conway's Law, as well as what's next for Compass and Nick's optimistic views on AI-accelerated software engineering.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details. Your host is Tobias Macey and today I'm interviewing Nick Schrock about building an AI analyst that keeps data teams in the loopInterview IntroductionHow did you get involved in the area of data management?Can you describe what Compass is and the story behind it?context repository structurehow to keep it relevant/avoid sprawl/duplicationproviding guardrailshow does a tool like Compass help provide feedback/insights back to the data teams?preparing the data warehouse for effective introspection by the AILLM selectioncost managementcaching/materializing ad-hoc queriesWhy Slack and enterprise chat are important to b2b softwareHow AI is changing stakeholder relationshipsHow not to overpromise AI capabilities How does Compass relate to BI?How does Compass relate to Dagster and Data Infrastructure?What are the most interesting, innovative, or unexpected ways that you have seen Compass used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on Compass?When is Compass the wrong choice?What do you have planned for the future of Compass?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links DagsterDagster LabsDagster PlusDagster CompassChris Bergh DataOps EpisodeRise of Medium Code blog postContext EngineeringData StewardInformation ArchitectureConway's LawTemporal durable execution frameworkThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Are dashboards dead? For complex enterprise use cases, the answer might be yes. In this episode, I'm joined by Irina Malkova (VP Data & AI at Salesforce), to discuss her team's transformational journey from building complex dashboards to deploying AI-powered conversational agents. We dive deep into how this shift is not just a change in tooling, but a fundamental change in how users access insights and how data teams measure their impact.
Join us as we cover: The Shift from Dashboards to Agents: We discuss why dashboards can create a high cognitive load and fail users in complex scenarios , and how conversational agents in the flow of work (like Slack) provide targeted, actionable insights and boost adoption.What is Product Telemetry?: Irina explains how telemetry is evolving from a simple engineering observability use case to a critical data source for AI, machine learning, and recommendation systems.Why Standard RAG Fails in the Enterprise: Irina shares why typical RAG approaches break down on dense, entity-rich corporate data (like Salesforce's help docs) where semantic similarity isn't enough, leading to the rise of Graph RAG.The New, Measurable ROI of Data: How moving from BI to agents allows data teams to precisely measure impact, track downstream actions, and finally have a concrete answer to the ROI question that was previously impossible to justify.Data Teams as Enterprise Leaders: Why data teams are uniquely positioned to lead AI transformation, as they hold the enterprise "ontology" and have experience building products under uncertainty.
Think you need a fancy degree to start a career in data? Think again. In this episode of Data Career School, Amlan Mohanty breaks down exactly how you can launch a successful data career and land your first job in data analytics, data science, or business intelligence without a traditional degree. Discover how to build in-demand skills, create a portfolio that gets noticed, and land your first data job using practical, actionable strategies. Whether you’re self-taught, switching careers, or just curious about the data field, this episode gives you the perfect roadmap to break into a data career.
Tristan talks with Mikkel Dengsøe, co-founder at SYNQ, to break down what agentic coding looks like in analytics engineering. Mikkel walks through a hands-on project using Cursor, the dbt MCP server, Omni's AI assistant, and Snowflake. They cover where agents shine (staging, unit tests, lineage-aware checks), where they're risky (BI chat for non-experts), and how observability is shifting from dashboards to root-cause explanations. For full show notes and to read 6+ years of back issues of the podcast's companion newsletter, head to https://roundup.getdbt.com. The Analytics Engineering Podcast is sponsored by dbt Labs.
Here are 5 exciting and unique data analyst projects that will build your skills and impress hiring managers! These range from beginner to advanced and are designed to enhance your data storytelling abilities. ✨ Try Julius today at https://landadatajob.com/Julius-YT Where I Go To Find Datasets (as a data analyst) 👉 https://youtu.be/DHfuvMyBofE?si=ABsdUfzgG7Nsbl89 💌 Join 10k+ aspiring data analysts & get my tips in your inbox weekly 👉 https://www.datacareerjumpstart.com/newsletter 🆘 Feeling stuck in your data journey? Come to my next free "How to Land Your First Data Job" training 👉 https://www.datacareerjumpstart.com/training 👩💻 Want to land a data job in less than 90 days? 👉 https://www.datacareerjumpstart.com/daa 👔 Ace The Interview with Confidence 👉 https://www.datacareerjumpstart.com/interviewsimulator
⌚ TIMESTAMPS 00:00 - Introduction 00:24 - Project 1: Stock Price Analysis 03:46 - Project 2: Real Estate Data Analysis (SQL) 07:52 - Project 3: Personal Finance Dashboard (Tableau or Power BI) 11:20 - Project 4: Pokemon Analysis (Python) 14:16 - Project 5: Football Data Analysis (any tool)
🔗 CONNECT WITH AVERY 🎥 YouTube Channel: https://www.youtube.com/@averysmith 🤝 LinkedIn: https://www.linkedin.com/in/averyjsmith/ 📸 Instagram: https://instagram.com/datacareerjumpstart 🎵 TikTok: https://www.tiktok.com/@verydata 💻 Website: https://www.datacareerjumpstart.com/ Mentioned in this episode: Join the last cohort of 2025! The LAST cohort of The Data Analytics Accelerator for 2025 kicks off on Monday, December 8th and enrollment is officially open!
To celebrate the end of the year, we’re running a special End-of-Year Sale, where you’ll get: ✅ A discount on your enrollment 🎁 6 bonus gifts, including job listings, interview prep, AI tools + more
If your goal is to land a data job in 2026, this is your chance to get ahead of the competition and start strong.
👉 Join the December Cohort & Claim Your Bonuses: https://DataCareerJumpstart.com/daa https://www.datacareerjumpstart.com/daa
Feeling behind on your data journey? Don't worry. Today, I'll list down the 13 signs that prove you're actually ahead (even if you're actually doing just some of these). ✨ Try Julius today at https://landadatajob.com/Julius-YT 💌 Join 10k+ aspiring data analysts & get my tips in your inbox weekly 👉 https://www.datacareerjumpstart.com/newsletter 🆘 Feeling stuck in your data journey? Come to my next free "How to Land Your First Data Job" training 👉 https://www.datacareerjumpstart.com/training 👩💻 Want to land a data job in less than 90 days? 👉 https://www.datacareerjumpstart.com/daa 👔 Ace The Interview with Confidence 👉 https://www.datacareerjumpstart.com/interviewsimulator ⌚ TIMESTAMPS 00:00 Introduction 00:05 #1 You can analyze data in Excel without panicking 00:52 #2 You know how to write basic SQL queries 01:17 #3 You can build a bar chart and scatter plot in Tableau or Power BI 01:59 #4 You can Google (or ChatGPT) your way through any error 02:45 #5 You can send me one portfolio project right now 03:45 #6 You talk about your data journey with friends and family regularly 05:50 #7 You’re actually applying to jobs (not just watching tutorials) 07:03 #8 You’ve joined a data community 07:48 #9 Your resume now includes (lots of) the right keywords 10:11 #10 You’ve optimized your LinkedIn for data roles 10:45 #11 A recruiter reaches out to you on LinkedIn 11:58 #12 You’ve had at least one real interview 12:52 #13 You’re comfortable not knowing everything (yet) 🔗 CONNECT WITH AVERY 🎥 YouTube Channel: https://www.youtube.com/@averysmith 🤝 LinkedIn: https://www.linkedin.com/in/averyjsmith/ 📸 Instagram: https://instagram.com/datacareerjumpstart 🎵 TikTok: https://www.tiktok.com/@verydata 💻 Website: https://www.datacareerjumpstart.com/ Mentioned in this episode: Join the last cohort of 2025! The LAST cohort of The Data Analytics Accelerator for 2025 kicks off on Monday, December 8th and enrollment is officially open!
To celebrate the end of the year, we’re running a special End-of-Year Sale, where you’ll get: ✅ A discount on your enrollment 🎁 6 bonus gifts, including job listings, interview prep, AI tools + more
If your goal is to land a data job in 2026, this is your chance to get ahead of the competition and start strong.
👉 Join the December Cohort & Claim Your Bonuses: https://DataCareerJumpstart.com/daa https://www.datacareerjumpstart.com/daa
The relationship between AI and data professionals is evolving rapidly, creating both opportunities and challenges. As companies embrace AI-first strategies and experiment with AI agents, the skills needed to thrive in data roles are fundamentally changing. Is coding knowledge still essential when AI can generate code for you? How important is domain expertise when automated tools can handle technical tasks? With data engineering and analytics engineering gaining prominence, the focus is shifting toward ensuring data quality and building reliable pipelines. But where does the human fit in this increasingly automated landscape, and how can you position yourself to thrive amid these transformations? Megan Bowers is Senior Content Manager, Digital Customer Success at Alteryx, where she develops resources for the Maveryx Community. She writes technical blogs and hosts the Alter Everything podcast, spotlighting best practices from data professionals across the industry. Before joining Alteryx, Megan worked as a data analyst at Stanley Black & Decker, where she led ETL and dashboarding projects and trained teams on Alteryx and Power BI. Her transition into data began after earning a degree in Industrial Engineering and completing a data science bootcamp. Today, she focuses on creating accessible, high-impact content that helps data practitioners grow. Her favorite topics include switching career paths after college, building a professional brand on LinkedIn, writing technical blogs people actually want to read, and best practices in Alteryx, data visualization, and data storytelling. Presented by Alteryx, Alter Everything serves as a podcast dedicated to the culture of data science and analytics, showcasing insights from industry specialists. Covering a range of subjects from the use of machine learning to various analytics career trajectories, and all that lies between, Alter Everything stands as a celebration of the critical role of data literacy in a data-driven world. In the episode, Richie and Megan explore the impact of AI on job functions, the rise of AI agents in business, and the importance of domain knowledge and process analytics in data roles. They also discuss strategies for staying updated in the fast-paced world of AI and data science, and much more. Links Mentioned in the Show: Alter EverythingConnect with MeganSkill Track: Alteryx FundamentalsRelated Episode: Scaling Enterprise Analytics with Libby Duane Adams, Chief Advocacy Officer and Co-Founder of AlteryxRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Data science continues to evolve in the age of AI, but is it still the 'sexiest job of the 21st century'? While generative AI has transformed the landscape, it hasn't replaced data scientists—instead, it's created more demand for their skills. Data professionals now incorporate AI into their workflows to boost efficiency, analyze data faster, and communicate insights more effectively. But with these technological advances come questions: How should you adapt your skills to stay relevant? What's the right balance between traditional data science techniques and new AI capabilities? And as roles like analytics engineer and machine learning engineer emerge, how do you position yourself for success in this rapidly changing field? Dawn Choo is the Co-Founder of Interview Master, a platform designed to streamline technical interview preparation. With a foundation in data science, financial analysis, and product strategy, she brings a cross-disciplinary lens to building data-driven tools that improve hiring outcomes. Her career spans roles at leading tech firms, including ClassDojo, Patreon, and Instagram, where she delivered insights to support product development and user engagement. Earlier, Dawn held analytical and engineering positions at Amazon and Bank of America, focusing on business intelligence, financial modeling, and risk analysis. She began her career at Facebook as a marketing analyst and continues to be a visible figure in the data science community—offering practical guidance to job seekers navigating technical interviews and career transitions. In the episode, Richie and Dawn explore the evolving role of data scientists in the age of AI, the impact of generative AI on workflows, the importance of foundational skills, and the nuances of the hiring process in data science. They also discuss the integration of AI in products and the future of personalized AI models, and much more. Links Mentioned in the Show: Interview MasterConnect with DawnDawn’s Newsletter: Ask Data DawnGet Certified: AI Engineer for Data Scientists Associate CertificationRelated Episode: How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib AcademyRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Product managers for BI platforms have it easy. They "just" need to have the dev team build a tool that gives all types of users access to all of the data they should be allowed to see in a way that is quick, simple, and clear while preventing them from pulling data that can be misinterpreted. Of course, there are a lot of different types of users—from the C-level executive who wants ready access to high-level metrics all the way to the analyst or data scientist who wants to drop into a SQL flow state to everyone in between. And sometimes the tool needs to provide structured dashboards, while at other times it needs to be a mechanism for ad hoc analysis. Maybe the product manager's job is actually…impossible? Past Looker CAO and current Omni CEO Colin Zima joined this episode for a lively discussion on the subject! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.
Business intelligence has been transforming organizations for decades, yet many companies still struggle with widespread adoption. With less than 40% of employees in most organizations having access to BI tools, there's a significant 'information underclass' making decisions without data-driven insights. How can businesses bridge this gap and achieve true information democracy? While new technologies like generative AI and semantic layers offer promising solutions, the fundamentals of data quality and governance remain critical. What balance should organizations strike between investing in innovative tools and strengthening their data infrastructure? How can you ensure your business becomes a 'data athlete' capable of making hyper-decisive moves in an uncertain economic landscape? Howard Dresner is founder and Chief Research Officer at Dresner Advisory Services and a leading voice in Business Intelligence (BI), credited with coining the term “Business Intelligence” in 1989. He spent 13 years at Gartner as lead BI analyst, shaping its research agenda and earning recognition as Analyst of the Year, Distinguished Analyst, and Gartner Fellow. He also led Gartner’s BI conferences in Europe and North America. Before founding Dresner Advisory in 2007, Howard was Chief Strategy Officer at Hyperion Solutions, where he drove strategy and thought leadership, helping position Hyperion as a leader in performance management prior to its acquisition by Oracle. Howard has written two books, The Performance Management Revolution – Business Results through Insight and Action, and Profiles in Performance – Business Intelligence Journeys and the Roadmap for Change - both published by John Wiley & Sons. In the episode, Richie and Howard explore the surprising low penetration of business intelligence in organizations, the importance of data governance and infrastructure, the evolving role of AI in BI, and the strategic initiatives driving BI usage, and much more. Links Mentioned in the Show: Dresner Advisory ServicesHoward’s Book - Profiles in Performance: Business Intelligence Journeys and the Roadmap for ChangeConnect with HowardSkill Track: Power BI FundamentalsRelated Episode: The Next Generation of Business Intelligence with Colin Zima, CEO at OmniRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
There have been lots of social media posts declaring things to be dead - SQL, R, data engineering, BI, etc.
I give my thoughts on these proclamations, why it's a wrong way to think about our space, and more.
Discover best practices to scale Power BI effectively—improving performance, governance, and self-service across enterprise environments. Published at: https://datalere.com/articles/power-bi-best-practices-from-the-field-lessons-from-enterprise-deployments
The modern data stack has transformed how organizations work with data, but are our BI tools keeping pace with these changes? As data schemas become increasingly fluid and analysis needs range from quick explorations to production-grade reporting, traditional approaches are being challenged. How can we create analytics experiences that accommodate both casual spreadsheet users and technical data modelers? With semantic layers becoming crucial for AI integration and data governance growing in importance, what skills do today's BI professionals need to master? Finding the balance between flexibility and governance is perhaps the greatest challenge facing data teams today. Colin Zima is the Co-Founder and CEO of Omni, a business intelligence platform focused on making data more accessible and useful for teams of all sizes. Prior to Omni, he was Chief Analytics Officer and VP of Product at Looker, where he helped shape the product and data strategy leading up to its acquisition by Google for $2.6 billion. Colin’s background spans roles in data science, analytics, and product leadership, including positions at Google, HotelTonight, and as founder of the restaurant analytics startup PrimaTable. He holds a degree in Operations Research and Financial Engineering from Princeton University and began his career as a Structured Credit Analyst at UBS. In the episode, Richie and Colin explore the evolution of BI tools, the challenges of integrating casual and rigorous data analysis, the role of semantic layers, and the impact of AI on business intelligence. They discuss the importance of understanding business needs, creating user-focused dashboards, and the future of data products, and much more. Links Mentioned in the Show: OmniConnect with ColinSkill Track: Design in Power BIRelated Episode: Self-Service Business Intelligence with Sameer Al-Sakran, CEO at MetabaseRegister for RADAR AI - June 26 New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Today, I’m responding to a listener's question about what it takes to succeed as a data or AI product manager, especially if you’re coming from roles like design/BI/data visualization, data science/engineering, or traditional software product management. This reader correctly observed that most of my content “seems more targeted at senior leadership” — and had asked if I could address this more IC-oriented topic on the show. I’ll break down why technical chops alone aren’t enough, and how user-centered thinking, business impact, and outcome-focused mindsets are key to real success — and where each of these prior roles brings strengths and/or weaknesses. I’ll also get into the evolving nature of PM roles in the age of AI, and what I think the super-powered AI product manager will look like.
Highlights/ Skip to:
Who can transition into an AI and data product management role? What does it take? (5:29) Software product managers moving into AI product management (10:05) Designers moving into data/AI product management (13:32) Moving into the AI PM role from the engineering side (21:47) Why the challenge of user adoption and trust is often the blocker to the business value (29:56) Designing change management into AI/data products as a skill (31:26) The challenge of value creation vs. delivery work — and how incentives are aligned for ICs (35:17) Quantifying the financial value of data and AI product work(40:23)
Quotes from Today’s Episode
“Who can transition into this type of role, and what is this role? I’m combining these two things. AI product management often seems closely tied to software companies that are primarily leveraging AI, or trying to, and therefore, they tend to utilize this AI product management role. I’m seeing less of that in internal data teams, where you tend to see data product management more, which, for me, feels like an umbrella term that may include traditional analytics work, data platforms, and often AI and machine learning. I’m going to frame this more in the AI space, primarily because I think AI tends to capture the end-to-end product than data product management does more frequently.” — Brian (2:55)
“There are three disciplines I’m going to talk about moving into this role. Coming into AI and data PM from design and UX, coming into it from data engineering (or just broadly technical spaces), and then coming into it from software product management. I think software product management and moving into the AI product management - as long as you’re not someone that has two years of experience, and then 18 years of repeating the second year of experience over and over again - and you’ve had a robust product management background across some different types of products; you can show that the domain doesn’t necessarily stop you from producing value. I think you will have the easiest time moving into AI product management because you’ve shown that you can adapt across different industries.” - Brian (9:45)
“Let’s talk about designers next. I’m going to include data visualization, user experience research, user experience design, product design, all those types of broad design, category roles. Moving into data and/or AI product management, first of all, you don’t see too many—I don’t hear about too many designers wanting to move into DPM roles, because oftentimes I don’t think there’s a lot of heavy UI and UX all the time in that space. Or at least the teams that are doing that work feel that’s somebody else’s job because they’re not doing end-to-end product thinking the way I talk about it, so therefore, a lot of times they don’t see the application, the user experience, the human adoption, the change management, they’re just not looking at the world that way, even though I think they should be.” - Brian (13:32)
“Coming at this from the data and engineering side, this is the classic track for data product management. At least that is the way I tend to see it. I believe most companies prefer to develop this role in-house. My biggest concern is that you end up with job title changes, but not necessarily the benefits that are supposed to come with this. I do like learning by doing, but having a coach and someone senior who can coach your other PMs is important because there’s a lot of information that you won’t necessarily get in a class or a course. It’s going to come from experience doing the work.” - Brian (22:26)
“This value piece is the most important thing, and I want to focus on that. This is something I frequently discuss in my training seminar: how do we attach financial value to the work we’re doing? This is both art and science, but it’s a language that anyone in a product management role needs to be comfortable with. If you’re finding it very hard to figure out how your data product contributes financial value because it’s based on this waterfalling of “We own the model, and it’s deployed on a platform.” The platform then powers these other things, which in turn power an application. How do we determine the value of our tool? These things are challenging, and if it’s challenging for you, guess how hard it will be for stakeholders downstream if you haven’t had the practice and the skills required to understand how to estimate value, both before we build something as well as after?” - Brian (31:51)
“If you don’t want to spend your time getting to know how your business makes money or creates value, then [AI and data product management work] is not for you. It’s just not. I would stay doing what you’re doing already or find a different thing because a lot of your time is going to be spent “managing up” for half the time, and then managing the product stuff “down.” Then, sitting in this middle layer, trying to explain to the business what’s going to come out and what the impact is going to be, in language that they care about and understand. You can't be talking about models, model accuracy, data pipelines, and all that stuff. They’re not going to care about any of that. - Brian (34:08)
Behavioural data is fast becoming a cornerstone of modern business strategy. Not just for media measurement or advertising optimisation, but across product, pricing, logistics, and platform development. It tells us what people actually do, not just what they say they do. As traditional market research struggles with low engagement and recall bias, brands are turning to digital behavioural data to make sharper, faster decisions. Whether it's tracking consumer journeys in the app economy or identifying early adoption trends (like the impact of AI tools on category disruption), the value lies in real, observable behaviour at scale. But, that shift raises new questions around data ownership, consent, and fairness. And, the rise of AI is only accelerating both the opportunity and the complexity. In the latest episode of Hub & Spoken, Jason Foster, CEO & Founder of Cynozure, speaks to Chris Havemann, CEO of RealityMine, and discusses everything from: The transition from survey-based research to behavioural data analysis The impact of AI on interpreting digital interactions Ethical considerations surrounding data consent and transparency Building trust through clear data collection and usage practices Learn from Chris's 25+ years in data and insight, and explore how behavioural signals are reshaping everything from media to market intelligence. **** Cynozure is a leading data, analytics and AI company that helps organisations to reach their data potential. It works with clients on data and AI strategy, data management, data architecture and engineering, analytics and AI, data culture and literacy, and data leadership. The company was named one of The Sunday Times' fastest-growing private companies in both 2022 and 2023 and recognised as The Best Place to Work in Data by DataIQ in 2023 and 2024. Cynozure is a certified B Corporation.
Summary In this episode of the Data Engineering Podcast, host Tobias Macy welcomes back Shinji Kim to discuss the evolving role of semantic layers in the era of AI. As they explore the challenges of managing vast data ecosystems and providing context to data users, they delve into the significance of semantic layers for AI applications. They dive into the nuances of semantic modeling, the impact of AI on data accessibility, and the importance of business logic in semantic models. Shinji shares her insights on how SelectStar is helping teams navigate these complexities, and together they cover the future of semantic modeling as a native construct in data systems. Join them for an in-depth conversation on the evolving landscape of data engineering and its intersection with AI.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Your host is Tobias Macey and today I'm interviewing Shinji Kim about the role of semantic layers in the era of AIInterview IntroductionHow did you get involved in the area of data management?Semantic modeling gained a lot of attention ~4-5 years ago in the context of the "modern data stack". What is your motivation for revisiting that topic today?There are several overlapping concepts – "semantic layer," "metrics layer," "headless BI." How do you define these terms, and what are the key distinctions and overlaps?Do you see these concepts converging, or do they serve distinct long-term purposes?Data warehousing and business intelligence have been around for decades now. What new value does semantic modeling beyond practices like star schemas, OLAP cubes, etc.?What benefits does a semantic model provide when integrating your data platform into AI use cases?How is it different between using AI as an interface to your analytical use cases vs. powering customer facing AI applications with your data?Putting in the effort to create and maintain a set of semantic models is non-zero. What role can LLMs play in helping to propose and construct those models?For teams who have already invested in building this capability, what additional context and metadata is necessary to provide guidance to LLMs when working with their models?What's the most effective way to create a semantic layer without turning it into a massive project? There are several technologies available for building and serving these models. What are the selection criteria that you recommend for teams who are starting down this path?What are the most interesting, innovative, or unexpected ways that you have seen semantic models used?What are the most interesting, unexpected, or challenging lessons that you have learned while working with semantic modeling?When is semantic modeling the wrong choice?What do you predict for the future of semantic modeling?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links SelectStarSun MicrosystemsMarkov Chain Monte CarloSemantic ModelingSemantic LayerMetrics LayerHeadless BICubePodcast EpisodeAtScaleStar SchemaData VaultOLAP CubeRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeKNN == K-Nearest NeighbersHNSW == Hierarchical Navigable Small Worlddbt Metrics LayerSoda DataLookMLHexPowerBITableauSemantic View (Snowflake)Databricks GenieSnowflake Cortex AnalystMalloyThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
In this episode of Hub & Spoken, Jason Foster speaks with Colin Zima, CEO and Co-founder of Omni, a modern business intelligence platform that combines the best of governance and usability. With a background spanning roles at Looker and Google, and two decades as both a data user and builder, Colin brings a unique perspective on the evolution of BI and the real role of AI in shaping its future. They explore why business intelligence remains critical for aligning organisations, how AI is raising the bar for access and self-service, and why semantics and business logic are more important than ever. The conversation challenges the notion that AI will replace dashboards, and instead focuses on how it can enhance accessibility, support different user needs, and empower data teams to work more efficiently. This episode is essential listening for business and data leaders thinking about the future of BI, the practical use of AI, and the role data teams play in delivering real value at speed. Tune in to hear how modern BI is evolving, and what leaders need to know to stay ahead. **** Cynozure is a leading data, analytics and AI company that helps organisations to reach their data potential. It works with clients on data and AI strategy, data management, data architecture and engineering, analytics and AI, data culture and literacy, and data leadership. The company was named one of The Sunday Times' fastest-growing private companies in both 2022 and 2023 and recognised as The Best Place to Work in Data by DataIQ in 2023 and 2024. Cynozure is a certified B Corporation.