talk-data.com talk-data.com

Topic

Cloud Storage

object_storage file_storage cloud

5

tagged

Activity Trend

5 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data + AI Summit 2025 ×
Sponsored by: Google Cloud | Powering AI & Analytics: Innovations in Google Cloud Storage for Data Lakes

Enterprise customers need a powerful and adaptable data foundation to navigate demands of AI and multi-cloud environments. This session dives into how Google Cloud Storage serves as a unified platform for modern analytics data lakes, together with Databricks. Discover how Google Cloud Storage provides key innovations like performance optimizations for Apache Iceberg, Anywhere Cache as the easiest way to colocate storage and compute, Rapid Storage for ultra low latency object reads and appends, and Storage Intelligence for vital data insights and recommendations. Learn how you can optimize your infrastructure to unlock the full value of your data for AI-driven success.

Mastering Change Data Capture With Lakeflow Declarative Pipelines

Transactional systems are a common source of data for analytics, and Change Data Capture (CDC) offers an efficient way to extract only what’s changed. However, ingesting CDC data into an analytics system comes with challenges, such as handling out-of-order events or maintaining global order across multiple streams. These issues often require complex, stateful stream processing logic.This session will explore how Lakeflow Declarative Pipelines simplifies CDC ingestion using the Apply Changes function. With Apply Changes, global ordering across multiple change feeds is handled automatically — there is no need to manually manage state or understand advanced streaming concepts like watermarks. It supports both snapshot-based inputs from cloud storage and continuous change feeds from systems like message buses, reducing complexity for common streaming use cases.

Real-Time Analytics Pipeline for IoT Device Monitoring and Reporting

This session will show how we implemented a solution to support high-frequency data ingestion from smart meters. We implemented a robust API endpoint that interfaces directly with IoT devices. This API processes messages in real time from millions of distributed IoT devices and meters across the network. The architecture leverages cloud storage as a landing zone for the raw data, followed by a streaming pipeline built on Lakeflow Declarative Pipelines. This pipeline implements a multi-layer medallion architecture to progressively clean, transform and enrich the data. The pipeline operates continuously to maintain near real-time data freshness in our gold layer tables. These datasets connect directly to Databricks Dashboards, providing stakeholders with immediate insights into their operational metrics. This solution demonstrates how modern data architecture can handle high-volume IoT data streams while maintaining data quality and providing accessible real-time analytics for business users.

Sponsored by: Fivetran | Raw Data to Real-Time Insights: How Dropbox Revolutionized Data Ingestion

Dropbox, a leading cloud storage platform, is on a mission to accelerate data insights to better understand customers’ needs and elevate the overall customer experience. By leveraging Fivetran’s data movement platform, Dropbox gained real-time visibility into customer sentiment, marketing ROI, and ad performance-empowering teams to optimize spend, improve operational efficiency, and deliver greater business outcomes.Join this session to learn how Dropbox:- Cut data pipeline time from 8 weeks to 30 minutes by automating ingestion and streamlining reporting workflows.- Enable real-time, reliable data movement across tools like Zendesk Chat, Google Ads, MySQL, and more — at global operations scale.- Unify fragmented data sources into the Databricks Data Intelligence Platform to reduce redundancy, improve accessibility, and support scalable analytics.

Lakeflow Connect: Smarter, Simpler File Ingestion With the Next Generation of Auto Loader

Auto Loader is the definitive tool for ingesting data from cloud storage into your lakehouse. In this session, we’ll unveil new features and best practices that simplify every aspect of cloud storage ingestion. We’ll demo out-of-the-box observability for pipeline health and data quality, walk through improvements for schema management, introduce a series of new data formats and unveil recent strides in Auto Loader performance. Along the way, we’ll provide examples and best practices for optimizing cost and performance. Finally, we’ll introduce a preview of what’s coming next — including a REST API for pushing files directly to Delta, a UI for creating cloud storage pipelines and more. Join us to help shape the future of file ingestion on Databricks.