talk-data.com talk-data.com

Topic

data

2093

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Introduction to Imaging from Scattered Fields

Obtain the Best Estimate of a Strongly Scattering Object from Limited Scattered Field Data Introduction to Imaging from Scattered Fields presents an overview of the challenging problem of determining information about an object from measurements of the field scattered from that object. It covers widely used approaches to recover information about the objects and examines the assumptions made a priori about the object and the consequences of recovering object information from limited numbers of noisy measurements of the scattered fields. The book explores the strengths and weaknesses of using inverse methods for weak scattering. These methods, including Fourier-based signal and image processing techniques, allow more straightforward inverse algorithms to be exploited based on a simple mapping of scattered field data. The authors also discuss their recent approach based on a nonlinear filtering step in the inverse algorithm. They illustrate how to use this algorithm through numerous two-dimensional electromagnetic scattering examples. MATLAB® code is provided to help readers quickly apply the approach to a wide variety of inverse scattering problems. In later chapters of the book, the authors focus on important and often forgotten overarching constraints associated with exploiting inverse scattering algorithms. They explain how the number of degrees of freedom associated with any given scattering experiment can be found and how this allows one to specify a minimum number of data that should be measured. They also describe how the prior discrete Fourier transform (PDFT) algorithm helps in estimating the properties of an object from scattered field measurements. The PDFT restores stability and improves estimates of the object even with severely limited data (provided it is sufficient to meet a criterion based on the number of degrees of freedom). Suitable for graduate students and researchers working on medical, geophysical, defense, and industrial inspection inverse problems, this self-contained book provides the necessary details for readers to design improved experiments and process measured data more effectively. It shows how to obtain the best estimate of a strongly scattering object from limited scattered field data.

MATLAB For Dummies

Plot graphs, solve equations, and write code in a flash! If you work in a STEM field, chances are you'll be using MATLAB on a daily basis. MATLAB is a popular and powerful computational tool and this book provides everything you need to start manipulating and plotting your data. MATLAB has rapidly become the premier data tool, and MATLAB For Dummies is a comprehensive guide to the fundamentals. MATLAB For Dummies guides you through this complex computational language from installation to visualization to automation. Learn MATLAB's language fundamentals including syntax, operators, and data types Understand how to use the most important window in MATLAB - the Command Window Get the basics of linear algebra to get up and running with vectors, matrices, and hyperspace Automate your work with programming scripts and functions Plot graphs in 2D and 3D to visualize your data Includes a handy guide for MATLAB's functions and plotting routines MATLAB is an essential part of the analysis arsenal and MATLAB For Dummies provides clear, thorough guidance to get the most out of your data.

MATLAB Matrix Algebra

" MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and how to solve systems of linear equations are described, with numerous examples. A section is dedicated to sparse matrices and other types of special matrices. In addition to its treatment of matrices, you will also learn how MATLAB can be used to work with arrays, lists, tables, sequences and sets."

Social Data Analytics

Social Data Analytics is the first practical guide for professionals who want to employ social data for analytics and business intelligence (BI). This book provides a comprehensive overview of the technologies and platforms and shows you how to access and analyze the data. You'll explore the five major types of social data and learn from cases and platform examples to help you make the most of sentiment, behavioral, social graph, location, and rich media data. A four-step approach to the social BI process will help you access, evaluate, collaborate, and share social data with ease. You'll learn everything you need to know to monitor social media and get an overview of the leading vendors in a crowded space of BI applications. By the end of this book, you will be well prepared for your organization’s next social data analytics project. Provides foundational understanding of new and emerging technologies—social data, collaboration, big data, advanced analytics Includes case studies and practical examples of success and failures Will prepare you to lead projects and advance initiatives that will benefit you and your organization

Analysis of Observational Health Care Data Using SAS

This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data.

This book is part of the SAS Press program.

MATLAB Optimization Techniques

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Optimization Techniques introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. It begins by introducing the MATLAB environment and the structure of MATLAB programming before moving on to the mathematics of optimization. The central part of the book is dedicated to MATLABs Optimization Toolbox, which implements state-of-the-art algorithms for solving multiobjective problems, non-linear minimization with boundary conditions and restrictions, minimax optimization, semi-infinitely constrained minimization and linear and quadratic programming. A wide range of exercises and examples are included, illustrating the most widely used optimization methods.

Behind Every Good Decision

So you’re not a numbers person? No worries! You say that you can’t understand how to read, let alone implement, these complex software programs that crunch all the data and spit out . . . more data? Not a problem either! There is a costly misconception in business today--that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. But actually, nothing could be further from the truth. In , authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool!--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. Readers will learn how to: Behind Every Good Decision Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!

Experimental Design

This book is a concise and innovative book that gives a complete presentation of the design and analysis of experiments in approximately one half the space of competing books. With only the modest prerequisite of a basic (non-calculus) statistics course, this text is appropriate for the widest possible audience. Two procedures are generally used to analyze experimental design data—analysis of variance (ANOVA) and regression analysis. Because ANOVA is more intuitive, this book devotes most of its first three chapters to showing how to use ANOVA to analyze balanced (equal sample size) experimental design data. The text first discusses regression analysis at the end of Chapter 2, where regression is used to analyze data that cannot be analyzed by ANOVA: unbalanced (unequal sample size) data from two-way factorials and data from incomplete block designs. Regression is then used again in Chapter 4 to analyze data resulting from two-level fractional factorial and block confounding experiments.

Service Fanatics: How to Build Superior Patient Experience the Cleveland Clinic Way

THE PROVEN MODEL FOR DRIVING POSITIVE ORGANIZATIONAL CHANGE Cleveland Clinic has long been recognized for driving some of the best clinical outcomes in the nation, but it was not always a leader in patient experience. There was atime when this revered organization ranked among the lowest in the country in this area. Within ten years, however, it had climbed to among the highest and has emerged as the thought leader in the space. How did Cleveland Clinic turn itself around so effectively and so quickly? More important, how can you do the same with your organization? In gripping, visceral, on-the ground fashion, Service Fanatics reveals the strategies and tactics the Clinic applied to become one of today's leading patient-experience healthcare organizations--methods that seamlessly translate to any business seeking to improveits customer experience. This strategic guide covers: How the Clinic's leaders redefined the concept of patient experience and developed a strategy to improve it Critical lessons learned regarding organization, recruitment, training, and measuring service excellence Ways in which the Clinic aligned its entire workforce around its Patients First strategy How leaders improved the critical element of physician communication Rather than view patients simply as sick people who need treatment, Cleveland Clinic sees them also as important stakeholders in the organization's success. Patients are customers--who desire, pay for, and deserve the best possible care and experience during what is often a challenging time in their lives. Featuring customer service case studies, as well as invaluable insight from C-level executives at top corporations in various industries, Service Fanatics provides actionable lessons for any manager and business leader beyond healthcare. Whether you run a healthcare institution, nonprofit, or for-profit business, Service Fanatics will help you create the kind of customer experience that promises to transform your organization into an industry powerhouse.

Simulation Technologies in Networking and Communications

Simulation is a widely used mechanism for validating the theoretical models of networking and communication systems. Although the claims made based on simulations are considered to be reliable, how reliable they really are is best determined with real-world implementation trials. Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test Considers superefficient Monte Carlo simulations Describes how to simulate and evaluate multicast routing algorithms Covers simulation tools for cloud computing and broadband passive optical networks Reports on recent developments in simulation tools for WSNs Examines modeling and simulation of vehicular networks The book compiles expert perspectives about the simulation of various networking and communications technologies. These experts review and evaluate popular simulation modeling tools and recommend the best tools for your specific tests. They also explain how to determine when theoretical modeling would be preferred over simulation.

Data-Driven Healthcare: How Analytics and BI are Transforming the Industry

Healthcare is changing, and data is the catalyst Data is taking over in a powerful way, and it's revolutionizing the healthcare industry. You have more data available than ever before, and applying the right analytics can spur growth. Benefits extend to patients, providers, and board members, and the technology can make centralized patient management a reality. Despite the potential for growth, many in the industry and government are questioning the value of data in health care, wondering if it's worth the investment. Data-Driven Healthcare: How Analytics and BI are Transforming the Industry tackles the issue and proves why BI is not only worth it, but necessary for industry advancement. Healthcare BI guru Laura Madsen challenges the notion that data have little value in healthcare, and shows how BI can ease regulatory reporting pressures and streamline the entire system as it evolves. Madsen illustrates how a data-driven organization is created, and how it can transform the industry. Learn why BI is a boon to providers Create powerful infographics to communicate data more effectively Find out how Big Data has transformed other industries, and how it applies to healthcare Data-Driven Healthcare: How Analytics and BI are Transforming the Industry provides tables, checklists, and forms that allow you to take immediate action in implementing BI in your organization. You can't afford to be behind the curve. The industry is moving on, with or without you. Data-Driven Healthcare: How Analytics and BI are Transforming the Industry is your guide to utilizing data to advance your operation in an industry where data-fueled growth will be the new norm.

Probability and Stochastic Processes

A comprehensive and accessible presentation of probability and stochastic processes with emphasis on key theoretical concepts and real-world applications With a sophisticated approach, Probability and Stochastic Processes successfully balances theory and applications in a pedagogical and accessible format. The book's primary focus is on key theoretical notions in probability to provide a foundation for understanding concepts and examples related to stochastic processes. Organized into two main sections, the book begins by developing probability theory with topical coverage on probability measure; random variables; integration theory; product spaces, conditional distribution, and conditional expectations; and limit theorems. The second part explores stochastic processes and related concepts including the Poisson process, renewal processes, Markov chains, semi-Markov processes, martingales, and Brownian motion. Featuring a logical combination of traditional and complex theories as well as practices, Probability and Stochastic Processes also includes: Multiple examples from disciplines such as business, mathematical finance, and engineering Chapter-by-chapter exercises and examples to allow readers to test their comprehension of the presented material A rigorous treatment of all probability and stochastic processes concepts An appropriate textbook for probability and stochastic processes courses at the upper-undergraduate and graduate level in mathematics, business, and electrical engineering, Probability and Stochastic Processes is also an ideal reference for researchers and practitioners in the fields of mathematics, engineering, and finance.

An Introduction to Probability and Statistical Inference, 2nd Edition

An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

The Synoptic Problem and Statistics

This book lays the foundations for a new area of interdisciplinary research that uses statistical techniques to investigate the synoptic problem in New Testament studies, which concerns the relationships between the Gospels of Matthew, Mark, and Luke. There are potential applications of the techniques to study other sets of similar documents. The book presents core statistical material on the use of hidden Markov models to analyze binary time series. The binary time series data sets and R code used are available on the author's website.

Mathematical Statistics for Applied Econometrics

An Introductory Econometrics Text Mathematical Statistics for Applied Econometrics covers the basics of statistical inference in support of a subsequent course on classical econometrics. The book shows students how mathematical statistics concepts form the basis of econometric formulations. It also helps them think about statistics as more than a toolbox of techniques. Uses Computer Systems to Simplify Computation The text explores the unifying themes involved in quantifying sample information to make inferences. After developing the necessary probability theory, it presents the concepts of estimation, such as convergence, point estimators, confidence intervals, and hypothesis tests. The text then shifts from a general development of mathematical statistics to focus on applications particularly popular in economics. It delves into matrix analysis, linear models, and nonlinear econometric techniques. Students Understand the Reasons for the Results Avoiding a cookbook approach to econometrics, this textbook develops students’ theoretical understanding of statistical tools and econometric applications. It provides them with the foundation for further econometric studies.

Think Stats, 2nd Edition

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

Nonparametric Statistical Methods Using R

This book covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm, which are available on CRAN. Each chapter includes exercises, making the book suitable for an undergraduate or graduate course.

Business Analytics Principles, Concepts, and Applications with SAS: What, Why, and How

Learn everything you need to know to start using business analytics and integrating it throughout your organization. brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. will be a valuable resource for all beginning-to-intermediate level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research. Business Analytics Principles, Concepts, and Applications with SAS

Presenting Data: How to Communicate Your Message Effectively

A clear easy-to-read guide to presenting your message using statistical data Poor presentation of data is everywhere; basic principles are forgotten or ignored. As a result, audiences are presented with confusing tables and charts that do not make immediate sense. This book is intended to be read by all who present data in any form. The author, a chartered statistician who has run many courses on the subject of data presentation, presents numerous examples alongside an explanation of how improvements can be made and basic principles to adopt. He advocates following four key 'C' words in all messages: Clear, Concise, Correct and Consistent. Following the principles in the book will lead to clearer, simpler and easier to understand messages which can then be assimilated faster. Anyone from student to researcher, journalist to policy adviser, charity worker to government statistician, will benefit from reading this book. More importantly, it will also benefit the recipients of the presented data. 'Ed Swires-Hennessy, a recognised expert in the presentation of statistics, explains and clearly describes a set of "principles" of clear and objective statistical communication. This book should be required reading for all those who present statistics.' Richard Laux, UK Statistics Authority 'I think this is a fantastic book and hope everyone who presents data or statistics makes time to read it first.' David Marder, Chief Media Adviser, Office for National Statistics, UK 'Ed's book makes his tried-and-tested material widely available to anyone concerned with understanding and presenting data. It is full of interesting insights, is highly practical and packed with sensible suggestions and nice ideas that you immediately want to try out.' Dr Shirley Coleman, Principal Statistician, Industrial Statistics Research Unit, School of Mathematics and Statistics, Newcastle University, UK

Right-Time Experiences: Driving Revenue with Mobile and Big Data

Grasp how mobile, big data, and analytics are combining to change business processes Right Experience, Right Results: Improving Profits, Margin, and Engagement with Mobile and Big Data illustrates how businesses can use mobility, big data, and analytics to enhance or change business processes, improve margins through better insight, transform customer experiences, empower employees with real-time, actionable insight, and more. The book depicts how companies can create competitive differentiation using mobile, cloud computing big data, and analytics to improve commerce, customer service, and communications with employees and consumers. In the past, the technologies used to deliver personalized and contextual services were either unavailable, unaffordable, or reserved solely for the consumer market. Today, however, the next wave of computing—mobile, cloud computing. big data, and analytics—has provided the foundation for businesses to create adaptive, personalized applications and services. Delivered point-of-need, these smarter services allow enterprise products and services to meet the burgeoning demand for always-connected, accurate, and real-time information. Right Experience, Right Results: Improving Profits, Margin, and Engagement with Mobile and Big Data is your guide to the new way of doing things. The book includes: Real world examples that illustrate how companies across various industries are creating better business processes by integrating new technologies A three step action plan for getting started and overcoming obstacles An electronic checklist with numerous actions that help get you up and running with incorporating mobile, big data, and analytics A guide to drawing insight from mobile, social, and other sources to create richer experiences If you're a CEO, chief marketing officer, marketing director, or business manager, Right Experience, Right Results gives you everything you need to harness technology to breathe new life into your business.