talk-data.com talk-data.com

Topic

Delta

Delta Lake

data_lake acid_transactions time_travel file_format storage

7

tagged

Activity Trend

117 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Denny Lee ×

Join us for an in-depth Ask Me Anything (AMA) on how Rust is revolutionizing Lakehouse formats like Delta Lake and Apache Iceberg through projects like delta-rs and iceberg-rs! Discover how Rust’s memory safety, zero-cost abstractions and fearless concurrency unlock faster development and higher-performance data operations. Whether you’re a data engineer, Rustacean or Lakehouse enthusiast, bring your questions on how Rust is shaping the future of open table formats!

Delta Lake: The Definitive Guide

Ready to simplify the process of building data lakehouses and data pipelines at scale? In this practical guide, learn how Delta Lake is helping data engineers, data scientists, and data analysts overcome key data reliability challenges with modern data engineering and management techniques. Authors Denny Lee, Tristen Wentling, Scott Haines, and Prashanth Babu (with contributions from Delta Lake maintainer R. Tyler Croy) share expert insights on all things Delta Lake--including how to run batch and streaming jobs concurrently and accelerate the usability of your data. You'll also uncover how ACID transactions bring reliability to data lakehouses at scale. This book helps you: Understand key data reliability challenges and how Delta Lake solves them Explain the critical role of Delta transaction logs as a single source of truth Learn the Delta Lake ecosystem with technologies like Apache Flink, Kafka, and Trino Architect data lakehouses with the medallion architecture Optimize Delta Lake performance with features like deletion vectors and liquid clustering

Simon + Denny Live: Ask Us Anything

Simon and Denny have been discussing and debating all things Delta, Lakehouse and Apache Spark™ on their regular webshow. Whether you want advice on lake structures, want to hear their opinions on the latest trends and hype in the data world, or you simply have a tech implementation question to throw at two seasoned experts, these two will have something to say on the matter. In their previous shows, Simon and Denny focused on building out a sample lakehouse architecture, refactoring and tinkering as new features came out, but now we're throwing the doors open for any and every question you might have.

So if you've had a persistent question and think these two can help, this is the session for you. There will be a question submission form shared prior to the event, so the team will be prepped with a whole bunch of topics to talk through. Simon and Denny want to hear your questions, which they can field drawing from a wealth of industry experience, wide ranging community engagement and their differing perspectives as external consultant and internal Databricks respectively. There's also a chance they'll get distracted and go way off track talking about coffee, sci-fi, nerdery or the English weather. It happens.

Talk by: Simon Whiteley and Denny Lee

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Delta Kernel: Simplifying Building Connectors for Delta

Since the release of Delta 2.0, the project has been growing at a breakneck speed. In this session, we will cover all the latest capabilities that makes Delta Lake the best format for the lakehouse. Based on lessons learned from this past year, we will introduce Project Aqueduct and how we will simplify building Delta Lake APIs from Rust and Go to Trino, Flink, and PySpark.

Talk by: Tathagata Das and Denny Lee

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Live from the Lakehouse: Lakehouse observability, and Delta Lake. With Michael Milirud and Denny Lee

Hear from two guests. First, Michael Milirud (Sr Manager, Product Management, Databricks) on Lakehouse monitoring and observability. Second guest, Denny Lee (Sr Staff Developer Advocate, Databricks), discusses Delta Lake. Hosted by Holly Smith (Sr Resident Solutions Architect, Databricks) and Jimmy Obeyeni (Strategic Account Executive, Databricks)

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Simon Whiteley + Denny Lee Live Ask Me Anything

Simon and Denny Build A Thing is a live webshow, where Simon Whiteley (Advancing Analytics) and Denny Lee (Databricks) are building out a TV Ratings Analytics tool, working through the various challenges of building out a Data Lakehouse using Databricks. In this session, they'll be talking through their Lakehouse Platform, revisiting various pieces of functionality, and answering your questions, Live!

This is your chance to ask questions around structuring a lake for enterprise data analytics, the various ways we can use Delta Live Tables to simplify ETL or how to get started serving out data using Databricks SQL. We have a whole load of things to talk through, but we want to hear YOUR questions, which we can field from industry experience, community engagement and internal Databricks direction. There's also a chance we'll get distracted and talk about the Expanse for far too long.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Learning Spark, 2nd Edition

Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow