talk-data.com talk-data.com

Topic

Modern Data Stack

4

tagged

Activity Trend

28 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Tarush Aggarwal ×

Summary

The "modern data stack" promised a scalable, composable data platform that gave everyone the flexibility to use the best tools for every job. The reality was that it left data teams in the position of spending all of their engineering effort on integrating systems that weren't designed with compatible user experiences. The team at 5X understand the pain involved and the barriers to productivity and set out to solve it by pre-integrating the best tools from each layer of the stack. In this episode founder Tarush Aggarwal explains how the realities of the modern data stack are impacting data teams and the work that they are doing to accelerate time to value.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack You shouldn't have to throw away the database to build with fast-changing data. You should be able to keep the familiarity of SQL and the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date. With Materialize, you can! It’s the only true SQL streaming database built from the ground up to meet the needs of modern data products. Whether it’s real-time dashboarding and analytics, personalization and segmentation or automation and alerting, Materialize gives you the ability to work with fresh, correct, and scalable results — all in a familiar SQL interface. Go to dataengineeringpodcast.com/materialize today to get 2 weeks free! Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino. Your host is Tobias Macey and today I'm welcoming back Tarush Aggarwal to talk about what he and his team at 5x data are building to improve the user experience of the modern data stack.

Interview

Introduction How did you get involved in the area of data management? Can you describe what 5x is and the story behind it?

We last spoke in March of 2022. What are the notable changes in the 5x business and product?

What are the notable shifts in the data ecosystem that have influenced your adoption and product direction?

What trends are you most focused on tracking as you plan the continued evolution of your offerings?

What are the points of friction that teams run into when trying to build their data platform? Can you describe design of the system that you have built?

What are the strategies that you rely on to support adaptability and speed of onboarding for new integrations?

What are some of the types of edge cases that you have to deal with while integrating and operating the platform implementations that you design for your customers? What is your process for selection of vendors to support?

How would you characte

Send us a text Part 1: Welcome Tarush Aggarwal, a Data man on the podcast. He talks modern data stack and a managed service to make all your data wishes come true. Show Notes 01:23 The benefits of being a "bad software engineer" 5:54 The great escape to … China 7:50 What's in a name "5x"? 9:24 Born during Covid 12:14 The modern stack 17:36 Why 5x? 18:08 Target customer profiles 21:40 The "friend" test Find Tarush : linkedin.com/in/tarushaggarwal Website: https://5x.co Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next. Abstract Making Data Simple Podcast is hosted by Al Martin, WW VP Account Technical Leader IBM Technology Sales, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.


Part Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text Part 1: Welcome Tarush Aggarwal, a Data man on the podcast. He talks modern data stack and a managed service to make all your data wishes come true.  Show Notes  01:23 The benefits of being a "bad software engineer" 5:54 The great escape to ... China  7:50 What's in a name "5x"?  9:24 Born during Covid  12:14 The modern stack  17:36 Why 5x?  18:08 Target customer profiles  21:40 The "friend" test  Find Tarush : linkedin.com/in/tarushaggarwal Website: https://5x.co  Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next. Abstract Making Data Simple Podcast is hosted by Al Martin, WW VP Account Technical Leader IBM Technology Sales, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Summary The modern data stack is a constantly moving target which makes it difficult to adopt without prior experience. In order to accelerate the time to deliver useful insights at organizations of all sizes that are looking to take advantage of these new and evolving architectures Tarush Aggarwal founded 5X Data. In this episode he explains how he works with these companies to deploy the technology stack and pairs them with an experienced engineer who assists with the implementation and training to let them realize the benefits of this architecture. He also shares his thoughts on the current state of the ecosystem for modern data vendors and trends to watch as we move into the future.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. So now your modern data stack is set up. How is everyone going to find the data they need, and understand it? Select Star is a data discovery platform that automatically analyzes & documents your data. For every table in Select Star, you can find out where the data originated, which dashboards are built on top of it, who’s using it in the company, and how they’re using it, all the way down to the SQL queries. Best of all, it’s simple to set up, and easy for both engineering and operations teams to use. With Select Star’s data catalog, a single source of truth for your data is built in minutes, even across thousands of datasets. Try it out for free and double the length of your free trial today at dataengineeringpodcast.com/selectstar. You’ll also get a swag package when you continue on a paid plan. Your host is Tobias Macey and today I’m interviewing Tarush Agarwal about how he and his team are helping organizations streamline adoption of the modern data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what you are doing at 5x and the story behind it? How has your focus and operating model shifted since we spoke a year ago?

What are the biggest shifts in the market for data management that you have seen in that time?

What are the main challenges that your customers are facing when they start working with you? What are the components that you are relying on to build repeatable data platforms for your customers?

What are the sharp edges that you have had to smooth out to scale your implementation of those