talk-data.com talk-data.com

Topic

r

176

tagged

Activity Trend

8 peak/qtr
2020-Q1 2026-Q1

Activities

176 activities · Newest first

Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. What You’ll Learn Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixedeffects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability Who This Book Is For Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to use R to perform more advanced analytics. Particularly, researchers and data analysts in the social sciences may benefit from these techniques. Additionally, analysts who need parallel processing to speed up analytics are givenproven code to reduce time to result(s).

Beyond Spreadsheets with R

Beyond Spreadsheets with R shows you how to take raw data and transform it for use in computations, tables, graphs, and more. You’ll build on simple programming techniques like loops and conditionals to create your own custom functions. You’ll come away with a toolkit of strategies for analyzing and visualizing data of all sorts using R and RStudio. About the Technology Spreadsheets are powerful tools for many tasks, but if you need to interpret, interrogate, and present data, they can feel like the wrong tools for the task. That’s when R programming is the way to go. The R programming language provides a comfortable environment to properly handle all types of data. And within the open source RStudio development suite, you have at your fingertips easy-to-use ways to simplify complex manipulations and create reproducible processes for analysis and reporting. About the Book With Beyond Spreadsheets with R you’ll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape from the web. You’ll build on simple programming techniques like loops and conditionals to create your own custom functions. You’ll come away with a toolkit of strategies for analyzing and visualizing data of all sorts. What's Inside How to start programming with R and RStudio Understanding and implementing important R structures and operators Installing and working with R packages Tidying, refining, and plotting your data About the Reader If you’re comfortable writing formulas in Excel, you’re ready for this book. About the Author Dr Jonathan Carroll is a data science consultant providing R programming services. He holds a PhD in theoretical physics. We interviewed Jonathan as a part of our Six Questions series. Check it out here. Quotes A useful guide to facilitate graduating from spreadsheets to more serious data wrangling with R. - John D. Lewis, DDN An excellent book to help you understand how stored data can be used. - Hilde Van Gysel, Trebol Engineering A great introduction to a data science programming language. Makes you want to learn more! - Jenice Tom, CVS Health Handy to have when your data spreads beyond a spreadsheet. - Danil Mironov, Luxoft Poland

Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics

Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.

R Graphics Cookbook, 2nd Edition

This O’Reilly cookbook provides more than 150 recipes to help scientists, engineers, programmers, and data analysts generate high-quality graphs quickly—without having to comb through all the details of R’s graphing systems. Each recipe tackles a specific problem with a solution you can apply to your own project and includes a discussion of how and why the recipe works. Most of the recipes in this second edition use the updated version of the ggplot2 package, a powerful and flexible way to make graphs in R. You’ll also find expanded content about the visual design of graphics. If you have at least a basic understanding of the R language, you’re ready to get started with this easy-to-use reference. Use R’s default graphics for quick exploration of data Create a variety of bar graphs, line graphs, and scatter plots Summarize data distributions with histograms, density curves, box plots, and more Provide annotations to help viewers interpret data Control the overall appearance of graphics Explore options for using colors in plots Create network graphs, heat maps, and 3D scatter plots Get your data into shape using packages from the tidyverse

Ensemble Classification Methods with Applications in R

An essential guide to two burgeoning topics in machine learning – classification trees and ensemble learning Ensemble Classification Methods with Applications in R introduces the concepts and principles of ensemble classifiers methods and includes a review of the most commonly used techniques. This important resource shows how ensemble classification has become an extension of the individual classifiers. The text puts the emphasis on two areas of machine learning: classification trees and ensemble learning. The authors explore ensemble classification methods’ basic characteristics and explain the types of problems that can emerge in its application. Written by a team of noted experts in the field, the text is divided into two main sections. The first section outlines the theoretical underpinnings of the topic and the second section is designed to include examples of practical applications. The book contains a wealth of illustrative cases of business failure prediction, zoology, ecology and others. This vital guide: Offers an important text that has been tested both in the classroom and at tutorials at conferences Contains authoritative information written by leading experts in the field Presents a comprehensive text that can be applied to courses in machine learning, data mining and artificial intelligence Combines in one volume two of the most intriguing topics in machine learning: ensemble learning and classification trees Written for researchers from many fields such as biostatistics, economics, environment, zoology, as well as students of data mining and machine learning, Ensemble Classification Methods with Applications in R puts the focus on two topics in machine learning: classification trees and ensemble learning.

R Programming Fundamentals

Master the essentials of programming with R and streamline your data analysis workflow with 'R Programming Fundamentals'. This book introduces key R concepts like data structures and control flow, and guides you through practical applications such as data visualization with ggplot2. By the end, you will progress to completing a full data science project for practical hands-on experience. What this Book will help me do Learn to use R's core features, including package management, data structures, and control flow. Process and clean datasets effectively within R, handling missing values and variable transformation. Master data visualization techniques with ggplot2 to create insightful plots and charts. Develop skills to import diverse datasets such as CSVs, Excel spreadsheets, and SQL databases into R. Construct a data science project end-to-end, applying skills in analysis, visualization, and reporting. Author(s) Kaelen Medeiros is a dedicated teacher with a passion for making complex concepts accessible. Bringing years of experience in data science and statistical computing, Kaelen excels at helping learners understand and leverage R for their data analysis needs. With a focus on practical learning, Kaelen has designed this book to give you the hands-on experience and foundational knowledge you need. Who is it for? This book is perfect for analysts looking to enhance their data science toolkit by learning R. It's especially suited for those with little R programming experience looking to start with foundational concepts. Whether you're an aspiring data scientist or a seasoned professional seeking a refresher, this book offers a structured approach to mastering R effectively.

Graphical Data Analysis with R

This book focuses on why one draws graphics to display data and which graphics to draw (and uses R to do so). Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. All the datasets are available in R or one of its packages and the R code is available online. Color graphics are used throughout the book.

Using R for Numerical Analysis in Science and Engineering

This practical guide shows how to use R and its add-on packages to obtain numerical solutions to complex mathematical problems commonly faced by scientists and engineers. Providing worked examples and code, the text not only addresses necessary aspects of the R programming language but also demonstrates how to produce useful graphs and statistically analyze and fit data to linear and nonlinear models. It covers Monte Carlo, stochastic, and deterministic methods and explores topics such as numerical differentiation and integration, interpolation and curve fitting, and optimization.

Domain-Specific Languages in R: Advanced Statistical Programming

Gain an accelerated introduction to domain-specific languages in R, including coverage of regular expressions. This compact, in-depth book shows you how DSLs are programming languages specialized for a particular purpose, as opposed to general purpose programming languages. Along the way, you’ll learn to specify tasks you want to do in a precise way and achieve programming goals within a domain-specific context. Domain-Specific Languages in R includes examples of DSLs including large data sets or matrix multiplication; pattern matching DSLs for application in computer vision; and DSLs for continuous time Markov chains and their applications in data science. After reading and using this book, you’ll understand how to write DSLs in R and have skills you can extrapolate to other programming languages. What You'll Learn Program with domain-specific languages using R Discover the components of DSLs Carry out large matrix expressions and multiplications Implement metaprogramming with DSLs Parse and manipulate expressions Who This Book Is For Those with prior programming experience. R knowledge is helpful but not required.

Python vs. R for Data Science

Python and R are two of the mainstream languages in data science. Fundamentally, Python is a language for programmers, whereas R is a language for statisticians. In a data science context, there is a significant degree of overlap when it comes to the capabilities of each language in the fields of regression analysis and machine learning. Your choice of language will depend highly on the environment in which you are operating. In a production environment, Python integrates with other languages much more seamlessly and is therefore the modus operandi in this context. However, R is much more common in research environments due to its more extensive selection of libraries for statistical analysis.

Data Analysis with R, Second Edition - Second Edition

"Data Analysis with R, Second Edition" is your ultimate guide to mastering data analysis in R, encompassing everything from foundational concepts to advanced techniques. You will learn to manipulate, analyze, and visualize data effectively, applying cutting-edge R packages like ggplot2 and dplyr. Through rich examples, this comprehensive book thoroughly prepares you to tackle real-world analytical challenges. What this Book will help me do Understand foundational statistical reasoning and sampling methods. Perform hypothesis testing and apply Bayesian methods to data analysis. Build and evaluate regression, classification, and time series models. Handle messy and missing data using advanced R techniques and methods. Optimize performance through parallel processing, Rcpp, and efficient data manipulation. Author(s) Chris Burnett is an experienced data analyst with over 15 years of expertise harnessing R for insights. A passionate advocate for accessible computing, Chris integrates practical exercises and rich examples to demystify complex analytical techniques. Their experience and dedication shine in this approachable yet detailed guide. Who is it for? This book is ideal for budding and professional data analysts or data scientists who wish to deepen their expertise in R. It suits learners with a basic understanding of R who aim to extend their proficiency in applied data analysis. The guide provides significant value for professionals aiming to implement effective analytical models. Readers seeking to grow within the analytics sector will find this resource indispensable.

HBR Guide to Data Analytics Basics for Managers (HBR Guide Series)

Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes

Business Case Analysis with R: Simulation Tutorials to Support Complex Business Decisions

This tutorial teaches you how to use the statistical programming language R to develop a business case simulation and analysis. It presents a methodology for conducting business case analysis that minimizes decision delay by focusing stakeholders on what matters most and suggests pathways for minimizing the risk in strategic and capital allocation decisions. Business case analysis, often conducted in spreadsheets, exposes decision makers to additional risks that arise just from the use of the spreadsheet environment. R has become one of the most widely used tools for reproducible quantitative analysis, and analysts fluent in this language are in high demand. The R language, traditionally used for statistical analysis, provides a more explicit, flexible, and extensible environment than spreadsheets for conducting business case analysis. The main tutorial follows the case in which a chemical manufacturing company considers constructing a chemical reactor and production facility to bring a new compound to market. There are numerous uncertainties and risks involved, including the possibility that a competitor brings a similar product online. The company must determine the value of making the decision to move forward and where they might prioritize their attention to make a more informed and robust decision. While the example used is a chemical company, the analysis structure it presents can be applied to just about any business decision, from IT projects to new product development to commercial real estate. The supporting tutorials include the perspective of the founder of a professional service firm who wants to grow his business and a member of a strategic planning group in a biomedical device company who wants to know how much to budget in order to refine the quality of information about critical uncertainties that might affect the value of a chosen product development pathway. What You’ll Learn Set upa business case abstraction in an influence diagram to communicate the essence of the problem to other stakeholders Model the inherent uncertainties in the problem with Monte Carlo simulation using the R language Communicate the results graphically Draw appropriate insights from the results Develop creative decision strategies for thorough opportunity cost analysis Calculate the value of information on critical uncertainties between competing decision strategies to set the budget for deeper data analysis Construct appropriate information to satisfy the parameters for the Monte Carlo simulation when little or no empirical data are available Who This Book Is For Financial analysts, data practitioners, and risk/business professionals; also appropriate for graduate level finance, business, or data science students

SQL Server 2017 Machine Learning Services with R

Learn how to leverage SQL Server 2017 Machine Learning Services and the R programming language to create robust, efficient data analysis and machine learning solutions. This book provides actionable insights and practical examples to help you implement and manage database-oriented analytics and predictive modeling. What this Book will help me do Understand and use SQL Server 2017 Machine Learning Services integrated with R. Gain experience in installing, configuring, and maintaining R services in SQL Server. Create and operationalize predictive models using RevoScaleR and other R packages. Improve database solutions by incorporating advanced analytics techniques. Monitor and manage R-based services effectively for reliable production solutions. Author(s) Tomaž Kaštrun and None Koesmarno bring a wealth of expertise as practitioners and educators in data science and SQL Server technologies. They share their experience innovatively, making intricate subjects approachable. Their unified teaching method ensures readers can directly benefit from practical examples and real-world applications. Who is it for? This book is tailored for database administrators, data analysts, and data scientists eager to integrate R with SQL Server. It caters to professionals with varying levels of R experience who are looking to enhance their proficiency in database-oriented analytics. Readers will benefit most if they are motivated to design effective, data-driven solutions in SQL Server environments.

R Projects For Dummies

Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.

Analyzing Baseball Data with R

With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.

R Programming By Example

"R Programming By Example" serves as an engaging and practical introduction to the R programming language for data analysis and visualization. Through step-by-step examples and comprehensive guides, this book builds your understanding from foundational knowledge to advanced applications in R. You will master programming practices while analyzing real-world scenarios. What this Book will help me do Gain proficiency in leveraging R's versatile features and package ecosystem to tackle data analysis tasks. Learn to create and customize high-quality visualizations, including 3D graphs, for enhanced data presentation. Understand statistical modeling and descriptive analysis techniques for extracting insights from data. Discover efficient programming strategies in R, including code profiling and parallelization, to optimize performance. Acquire the skills to interface R with databases and RESTful APIs for robust data integration. Author(s) The authors, None Trejo Navarro and Omar Trejo Navarro, bring a wealth of experience in statistical programming and data analysis. Having worked extensively with R, they focus on practical and results-driven teaching. They have a passion for making complex topics accessible to learners. Who is it for? This book is aimed at aspiring data scientists, statisticians, or analysts looking to learn R. It is particularly suitable for readers familiar with basic programming concepts and who wish to apply R in practical scenarios. Whether you're analyzing data, building models, or creating visualizations, this book will guide you effectively. If you're eager to advance your R skills through hands-on projects, this is for you.

R Data Mining

Dive into the world of data mining with 'R Data Mining' and discover how to utilize R's vast tools for uncovering insights in data. This hands-on guide immerses you in real-world cases, teaching both foundational concepts and advanced techniques like regression models and text mining. You'll emerge with a sharp understanding of how to transform raw data into actionable information. What this Book will help me do Gain proficiency in R packages such as dplyr and ggplot2 for data manipulation and visualization. Master the CRISP-DM methodology to systematically approach data mining projects. Develop skillsets in data cleaning and validation to ensure quality data analysis. Understand and implement multiple regression and classification techniques effectively. Learn to use ensemble learning methods and produce reporting with R Markdown. Author(s) Andrea Cirillo brings extensive expertise in data science and R programming as the author of 'R Data Mining.' Their practical approach, drawing from professional experiences in various industries, makes complex techniques accessible and engaging. Their passion for teaching translates into a meticulously crafted learning journey for aspiring data miners. Who is it for? This book is ideal for beginner to intermediate-level data analysts or aspiring data scientists eager to delve into the field of data mining using R. If you're familiar with the basics of programming in R and want to expand into practical applications of data mining methodologies, this is the resource for you. Gain hands-on experience by engaging with real-world datasets and scenarios.