talk-data.com talk-data.com

Topic

RAG

Retrieval Augmented Generation (RAG)

ai machine_learning llm

369

tagged

Activity Trend

83 peak/qtr
2020-Q1 2026-Q1

Activities

369 activities · Newest first

The future of education lies in personalized and scalable solutions, especially in fields like computer engineering where complex concepts often challenge students. This talk introduces Lumina (AI Teaching Assistant), a cutting-edge agentic system designed to revolutionize programming education through its innovative architecture and teaching strategies. Built using OpenAI API, LangChain, RAG, and ChromaDB, Lumina employs an agentic, multi-modal framework that dynamically integrates course materials, technical documentation, and pedagogical strategies into an adaptive knowledge-driven system. Its unique "Knowledge Components" approach decomposes programming concepts into interconnected teachable units, enabling proficiency-based learning and dynamic problem-solving guidance.

The future of education lies in personalized and scalable solutions, especially in fields like computer engineering where complex concepts often challenge students. This talk introduces Lumina (AI Teaching Assistant), a cutting-edge agentic system designed to revolutionize programming education through its innovative architecture and teaching strategies. Built using OpenAI API, LangChain, RAG, and ChromaDB, Lumina employs an agentic, multi-modal framework that dynamically integrates course materials, technical documentation, and pedagogical strategies into an adaptive knowledge-driven system. Its unique “Knowledge Components” approach decomposes programming concepts into interconnected teachable units, enabling proficiency-based learning and dynamic problem-solving guidance. Attendees will discover how Lumina’s agentic architecture enhances engagement, fosters critical thinking, and improves concept mastery, paving the way for scalable AI-driven educational solutions.

In this episode, Raja Iqbal welcomes Jay Alammar, a renowned educator, researcher, and visual storyteller in machine learning. Jay shares his fascinating journey into simplifying complex AI concepts through visual storytelling and his passion for making AI education accessible to everyone.

Raja and Jay discuss the power of visual learning, the role of intuition in understanding AI, and the challenges and opportunities in enterprise AI adoption. Jay also explores how AI is reshaping industries, the importance of tools like Retrieval-Augmented Generation (RAG), and his experiences at Cohere, where he helps organizations harness the power of large language models for real-world applications.

This episode is perfect for anyone curious about the evolving world of AI, practical ways to adopt AI in business, and the importance of education in driving innovation.

AI-Powered Search

Apply cutting-edge machine learning techniques—from crowdsourced relevance and knowledge graph learning, to Large Language Models (LLMs)—to enhance the accuracy and relevance of your search results. Delivering effective search is one of the biggest challenges you can face as an engineer. AI-Powered Search is an in-depth guide to building intelligent search systems you can be proud of. It covers the critical tools you need to automate ongoing relevance improvements within your search applications. Inside you’ll learn modern, data-science-driven search techniques like: Semantic search using dense vector embeddings from foundation models Retrieval augmented generation (RAG) Question answering and summarization combining search and LLMs Fine-tuning transformer-based LLMs Personalized search based on user signals and vector embeddings Collecting user behavioral signals and building signals boosting models Semantic knowledge graphs for domain-specific learning Semantic query parsing, query-sense disambiguation, and query intent classification Implementing machine-learned ranking models (Learning to Rank) Building click models to automate machine-learned ranking Generative search, hybrid search, multimodal search, and the search frontier AI-Powered Search will help you build the kind of highly intelligent search applications demanded by modern users. Whether you’re enhancing your existing search engine or building from scratch, you’ll learn how to deliver an AI-powered service that can continuously learn from every content update, user interaction, and the hidden semantic relationships in your content. You’ll learn both how to enhance your AI systems with search and how to integrate large language models (LLMs) and other foundation models to massively accelerate the capabilities of your search technology. About the Technology Modern search is more than keyword matching. Much, much more. Search that learns from user interactions, interprets intent, and takes advantage of AI tools like large language models (LLMs) can deliver highly targeted and relevant results. This book shows you how to up your search game using state-of-the-art AI algorithms, techniques, and tools. About the Book AI-Powered Search teaches you to create a search that understands natural language and improves automatically the more it is used. As you work through dozens of interesting and relevant examples, you’ll learn powerful AI-based techniques like semantic search on embeddings, question answering powered by LLMs, real-time personalization, and Retrieval Augmented Generation (RAG). What's Inside Sparse lexical and embedding-based semantic search Question answering, RAG, and summarization using LLMs Personalized search and signals boosting models Learning to Rank, multimodal, and hybrid search About the Reader For software developers and data scientists familiar with the basics of search engine technology. About the Author Trey Grainger is the Founder of Searchkernel and former Chief Algorithms Officer and SVP of Engineering at Lucidworks. Doug Turnbull is a Principal Engineer at Reddit and former Staff Relevance Engineer at Spotify. Max Irwin is the Founder of Max.io and former Managing Consultant at OpenSource Connections. Quotes Belongs on the shelf of every search practitioner! - Khalifeh AlJadda, Google A treasure map! Now you have decades of semantic search knowledge at your fingertips. - Mark Moyou, NVIDIA Modern and comprehensive! Everything you need to build world-class search experiences. - Kelvin Tan, SearchStax Kick starts your ability to implement AI search with easy to understand examples. - David Meza, NASA

As AI continues to advance, natural language processing (NLP) is at the forefront, transforming how businesses interact with data. From chatbots to document analysis, NLP offers numerous applications. But with the advent of generative AI, professionals face new challenges: When is it appropriate to use traditional NLP techniques versus more advanced models? How do you balance the costs and benefits of these technologies? Explore the strategic decisions and practical applications of NLP in the modern business world. Meri Nova is the founder of Break Into Data, a data careers company. Her work focuses on helping people switch to a career in data, and using machine learning to improve community engagement. Previously, she was a data scientist and machine learning engineer at Hyloc. Meri is the instructor of DataCamp's 'Retrieval Augmented Generation with LangChain' course. In the episode, Richie and Meri explore the evolution of natural language processing, the impact of generative AI on business applications, the balance between traditional NLP techniques and modern LLMs, the role of vector stores and knowledge graphs, and the exciting potential of AI in automating tasks and decision-making, and much more. Links Mentioned in the Show: Meri’s Breaking Into Data Handbook on GitHubBreak Into Data Discord GroupConnect with MeriSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: Industry Roundup #2: AI Agents for Data Work, The Return of the Full-Stack Data Scientist and Old languages Make a ComebackRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

AI features and products are the hottest area of software development. Creating high quality AI software is both essential and challenging for many businesses. In this episode, we look at retrieval augmented generation, an important technique for improving text generation quality in AI applications. Beyond technical measures, we look at the broader quality problem for AI applications. How do you ensure your AI applications are effective and secure? What steps should you take to integrate AI into your existing data governance frameworks? And how do you measure the success of these AI-driven solutions? Theresa Parker is the Director of Product Management at Rocket Software. She has 25 years of experience as a technology executive with a focus on software development processes, consultancy, and business development. Her recent work in content management focuses on the use of AI and RAG to improve content discoverability. Sudhi Balan is the Chief Technology Officer for AI & Cloud. He leads the AI and data teams for data modernization, driving AI adoption of Rocket's structured and unstructured data products. He also shapes AI strategy for Rocket’s infrastructure and app portfolio. He has earned patents for safe and scalable applications of transformational technology. Previously, he led digital transformation and hybrid cloud strategy for Rocket’s unstructured data business and was Senior Director of Product Development at ASG. In the episode, Richie, Theresa, and Sudhi explore retrieval-augmented generation, its applications in customer support and loan processing, the importance of data governance and privacy, the role of testing and guardrails in AI, cost management strategies, and the potential of AI to transform customer experiences, and much more. Links Mentioned in the Show: Rocket SoftwareConnect with Theresa and SudhiCourse: Retrieval Augmented Generation (RAG) with LangChainRelated Episode: Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AIRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Send us a text Richmond Alake, Developer Advocate at MongoDB, is an AI/ML practitioner with an academic background in computer vision, robotics, and machine learning.  If databases that scale for AI are your thing, this one is for you. 02:05 Meet Rich Alake 03:57 A Developer Advocate at MongoDB 05:57 Passions and Fate! 08:52 AI Hype 13:14 Oh No.  AGI Again… 17:30 What Makes and AI Database? 20:42 Use Cases 25:41 RAG Best Practices 27:40 The Role of Database 30:05 Why is MongoDB Better At? 32:43 What's Next 36:13 Advice on Contious Learning 38:44 Where to Find Rich? Linkedin: linkedin.com/in/richmondalake Website: https://www.mongodb.com/

Register For MongoDB: https://mdb.link/register_make_data_simple AI Agents Article: https://mdb.link/ai_agents_making_data_simple Best Repo for AI Developers: https://mdb.link/ai_developer_resource  Richmond's LinkedIn: https://www.linkedin.com/in/richmondalake/ Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.