talk-data.com talk-data.com

Topic

data-science

2252

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

2252 activities · Newest first

Forensic Analytics, 2nd Edition

Become the forensic analytics expert in your organization using effective and efficient data analysis tests to find anomalies, biases, and potential fraud—the updated new edition Forensic Analytics reviews the methods and techniques that forensic accountants can use to detect intentional and unintentional errors, fraud, and biases. This updated second edition shows accountants and auditors how analyzing their corporate or public sector data can highlight transactions, balances, or subsets of transactions or balances in need of attention. These tests are made up of a set of initial high-level overview tests followed by a series of more focused tests. These focused tests use a variety of quantitative methods including Benford’s Law, outlier detection, the detection of duplicates, a comparison to benchmarks, time-series methods, risk-scoring, and sometimes simply statistical logic. The tests in the new edition include the newly developed vector variation score that quantifies the change in an array of data from one period to the next. The goals of the tests are to either produce a small sample of suspicious transactions, a small set of transaction groups, or a risk score related to individual transactions or a group of items. The new edition includes over two hundred figures. Each chapter, where applicable, includes one or more cases showing how the tests under discussion could have detected the fraud or anomalies. The new edition also includes two chapters each describing multi-million-dollar fraud schemes and the insights that can be learned from those examples. These interesting real-world examples help to make the text accessible and understandable for accounting professionals and accounting students without rigorous backgrounds in mathematics and statistics. Emphasizing practical applications, the new edition shows how to use either Excel or Access to run these analytics tests. The book also has some coverage on using Minitab, IDEA, R, and Tableau to run forensic-focused tests. The use of SAS and Power BI rounds out the software coverage. The software screenshots use the latest versions of the software available at the time of writing. This authoritative book: Describes the use of statistically-based techniques including Benford’s Law, descriptive statistics, and the vector variation score to detect errors and anomalies Shows how to run most of the tests in Access and Excel, and other data analysis software packages for a small sample of the tests Applies the tests under review in each chapter to the same purchasing card data from a government entity Includes interesting cases studies throughout that are linked to the tests being reviewed. Includes two comprehensive case studies where data analytics could have detected the frauds before they reached multi-million-dollar levels Includes a continually-updated companion website with the data sets used in the chapters, the queries used in the chapters, extra coverage of some topics or cases, end of chapter questions, and end of chapter cases. Written by a prominent educator and researcher in forensic accounting and auditing, the new edition of Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations is an essential resource for forensic accountants, auditors, comptrollers, fraud investigators, and graduate students.

Innovative Tableau

Level up with Tableau to build eye-catching, easy-to-interpret data visualizations. In this follow-up guide to Practical Tableau, author Ryan Sleeper takes you through a collection of unique tips and tutorials for using this popular software. Beginning to advanced Tableau users will learn how to go beyond Show Me to make better charts and learn dozens of tricks to improve both the author and user experience. Featuring many approaches he developed himself, Ryan shows you how to create charts that empower Tableau users to explore, understand, and derive value from their data. He also shares many of his favorite tricks that enabled him to become a Tableau Zen Master, Tableau Public Visualization of the Year author, and Tableau Global Iron Viz Champion. Learn what’s new in Tableau since Practical Tableau was released Examine unique new charts—timelines, custom gauges, and leapfrog charts—plus innovations to traditional charts such as highlight tables, scatter plots, and maps Get tips that can help make a Tableau developer’s life easier Understand what developers can do to make users’ lives easier

Practical Statistics for Data Scientists, 2nd Edition

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data

ML Ops: Operationalizing Data Science

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren’t truly operational, these models can’t possibly do what you’ve trained them to do. This report introduces practical concepts to help data scientists and application engineers operationalize ML models to drive real business change. Through lessons based on numerous projects around the world, six experts in data analytics provide an applied four-step approach—Build, Manage, Deploy and Integrate, and Monitor—for creating ML-infused applications within your organization. You’ll learn how to: Fulfill data science value by reducing friction throughout ML pipelines and workflows Constantly refine ML models through retraining, periodic tuning, and even complete remodeling to ensure long-term accuracy Design the ML Ops lifecycle to ensure that people-facing models are unbiased, fair, and explainable Operationalize ML models not only for pipeline deployment but also for external business systems that are more complex and less standardized Put the four-step Build, Manage, Deploy and Integrate, and Monitor approach into action

The Value of AI-Powered Business Intelligence

Artificial intelligence can yield powerful results when applied to business intelligence. Whether it’s pattern recognition in words, numbers, and big datasets or optimizing processes and expediting outcomes, AI is becoming a critical business component. In this report, Michael Norris from IBM explains how to drive AI adoption in your company. What does it mean to infuse AI into BI? It means business users can discover actionable, easy-to-understand insights on their own, independently from IT—even while remaining within the organization’s secure and governed IT architecture. Explore how AI in BI helps you to "get to the why" when analyzing and optimizing the insights you discover. Learn how AI-infused business intelligence: Enables line-of-business users to easily discover data-driven insights without requiring specialized data science expertise Allows users to ask questions in plain language with intuitive exploration tools to gain deeper insight into their data Provides recommended visualizations and dashboards to present compelling, concise, and explainable data Prepares datasets for analysis to free up IT analysts and line-of-business users

Strategic Analytics: The Insights You Need from Harvard Business Review

Is your company ready for the next wave of analytics? Data analytics offer the opportunity to predict the future, use advanced technologies, and gain valuable insights about your business. But unless you're staying on top of the latest developments, your company is wasting that potential--and your competitors will be gaining speed while you fall behind. Strategic Analytics: The Insights You Need from Harvard Business Review will provide you with today's essential thinking about what data analytics are capable of, what critical talents your company needs to reap their benefits, and how to adopt analytics throughout your organization--before it's too late. Business is changing. Will you adapt or be left behind? Get up to speed and deepen your understanding of the topics that are shaping your company's future with the Insights You Need from Harvard Business Review series. Featuring HBR's smartest thinking on fast-moving issues--blockchain, cybersecurity, AI, and more--each book provides the foundational introduction and practical case studies your organization needs to compete today and collects the best research, interviews, and analysis to get it ready for tomorrow. You can't afford to ignore how these issues will transform the landscape of business and society. The Insights You Need series will help you grasp these critical ideas--and prepare you and your company for the future.

Interactive Data Visualization with Python - Second Edition

With Interactive Data Visualization with Python, you will learn to turn raw data into compelling, interactive visual stories. This book guides you through the practical uses of Python libraries such as Bokeh and Plotly, teaching you skills to create visualizations that captivate and inform. What this Book will help me do Understand and apply different principles and techniques of interactive data visualization to bring your data to life. Master the use of libraries like Matplotlib, Seaborn, Altair, and Bokeh for creating a variety of data visualizations. Learn how to customize data visualizations effectively to meet the needs of different audiences and use cases. Gain proficiency in using advanced tools like Plotly for creating dynamic and engaging visual presentations. Acquire the ability to identify common pitfalls in visualization and learn strategies to avoid them, ensuring clarity and impact. Author(s) Abha Belorkar, Sharath Chandra Guntuku, Shubhangi Hora, and Anshu Kumar are experts in Python programming and data visualization with years of experience in data science and software development. They have collaborated to blend their knowledge into this book-a clear and practical guide to mastering interactive visualization with Python. Who is it for? This book is perfect for Python developers, data analysts, and data scientists who want to enhance their skills in data presentation. If you are ready to transform complex data into digestible and interactive visuals, this book is for you. A basic familiarity with Python programming and libraries like pandas is recommended. By the end of the book, you'll feel confident in creating professional-grade data visualizations.

Practical MATLAB Modeling with Simulink: Programming and Simulating Ordinary and Partial Differential Equations

Employ the essential and hands-on tools and functions of MATLAB's ordinary differential equation (ODE) and partial differential equation (PDE) packages, which are explained and demonstrated via interactive examples and case studies. This book contains dozens of simulations and solved problems via m-files/scripts and Simulink models which help you to learn programming and modeling of more difficult, complex problems that involve the use of ODEs and PDEs. You’ll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving more complex engineering and scientific computing problems that require and use differential equations. Practical MATLAB Modeling with Simulink explains various practical issues of programming and modelling. After reading and using this book, you'll be proficient at using MATLAB and applying the source code from the book's examples as templates for your own projects in data science or engineering. What You Will Learn Model complex problems using MATLAB and Simulink Gain the programming and modeling essentials of MATLAB using ODEs and PDEs Use numerical methods to solve 1st and 2nd order ODEs Solve stiff, higher order, coupled, and implicit ODEs Employ numerical methods to solve 1st and 2nd order linear PDEs Solve stiff, higher order, coupled, and implicit PDEs Who This Book Is For Engineers, programmers, data scientists, and students majoring in engineering, applied/industrial math, data science, and scientific computing. This book continues where Apress' Beginning MATLAB and Simulink leaves off.

Differential Equation Solutions with MATLAB®

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.

End-to-end Data Analytics for Product Development

An interactive guide to the statistical tools used to solve problems during product and process innovation End to End Data Analytics for Product Development is an accessible guide designed for practitioners in the industrial field. It offers an introduction to data analytics and the design of experiments (DoE) whilst covering the basic statistical concepts useful to an understanding of DoE. The text supports product innovation and development across a range of consumer goods and pharmaceutical organizations in order to improve the quality and speed of implementation through data analytics, statistical design and data prediction. The book reviews information on feasibility screening, formulation and packaging development, sensory tests, and more. The authors – noted experts in the field – explore relevant techniques for data analytics and present the guidelines for data interpretation. In addition, the book contains information on process development and product validation that can be optimized through data understanding, analysis and validation. The authors present an accessible, hands-on approach that uses MINITAB and JMP software. The book: • Presents a guide to innovation feasibility and formulation and process development • Contains the statistical tools used to solve challenges faced during product innovation and feasibility • Offers information on stability studies which are common especially in chemical or pharmaceutical fields • Includes a companion website which contains videos summarizing main concepts Written for undergraduate students and practitioners in industry, End to End Data Analytics for Product Development offers resources for the planning, conducting, analyzing and interpreting of controlled tests in order to develop effective products and processes.

Solving Optimization Problems with MATLAB®

This book focuses on solving optimization problems with MATLAB. Descriptions and solutions of nonlinear equations of any form are studied first. Focuses are made on the solutions of various types of optimization problems, including unconstrained and constrained optimizations, mixed integer, multiobjective and dynamic programming problems. Comparative studies and conclusions on intelligent global solvers are also provided.

Build a Career in Data Science

You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. About the Technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the Book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's Inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the Reader For readers who want to begin or advance a data science career. About the Authors Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Quotes Full of useful advice, real-case scenarios, and contributions from professionals in the industry. - Sebastián Palma Mardones, ArchDaily The perfect companion for someone who wants to be a successful data scientist! - Gustavo Gomes, Brightcove Insightful overview of all aspects of a data science career. - Krzysztof Jędrzejewski, Pearson Highly recommended. - Hagai Luger, Clarizen

The Practitioner's Guide to Graph Data

Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system

Transforming Healthcare Analytics

Real-life examples of how to apply intelligence in the healthcare industry through innovative analytics Healthcare analytics offers intelligence for making better healthcare decisions. Identifying patterns and correlations contained in complex health data, analytics has applications in hospital management, patient records, diagnosis, operating and treatment costs, and more. Helping healthcare managers operate more efficiently and effectively. Transforming Healthcare Analytics: The Quest for Healthy Intelligence shares real-world use cases of a healthcare company that leverages people, process, and advanced analytics technology to deliver exemplary results. This book illustrates how healthcare professionals can transform the healthcare industry through analytics. Practical examples of modern techniques and technology show how unified analytics with data management can deliver insight-driven decisions. The authors—a data management and analytics specialist and a healthcare finance executive—share their unique perspectives on modernizing data and analytics platforms to alleviate the complexity of the healthcare, distributing capabilities and analytics to key stakeholders, equipping healthcare organizations with intelligence to prepare for the future, and more. This book: Explores innovative technologies to overcome data complexity in healthcare Highlights how analytics can help with healthcare market analysis to gain competitive advantage Provides strategies for building a strong foundation for healthcare intelligence Examines managing data and analytics from end-to-end, from diagnosis, to treatment, to provider payment Discusses the future of technology and focus areas in the healthcare industry Transforming Healthcare Analytics: The Quest for Healthy Intelligence is an important source of information for CFO’s, CIO, CTO, healthcare managers, data scientists, statisticians, and financial analysts at healthcare institutions.

MATLAB Programming

This book presents fundamentals in MATLAB programming, including data and statement structures, control structures, function writing and bugging in MATLAB programming, followed by the presentations of algebraic computation, transcendental function evaluations and data processing. Advanced topics such as MATLAB interfacing, object-oriented programming and graphical user interface design are also addressed.

DAX Cookbook

"DAX Cookbook: Over 120 recipes to enhance your business with analytics, reporting, and business intelligence" is the ultimate guidebook for mastering DAX (Data Analysis Expressions) in business intelligence, Power BI, and SQL Server Analysis Services. With hands-on examples and extensive recipes, it enables professionals to solve real-world data challenges effectively. What this Book will help me do Understand how to create tailored calculations for dates, time, and duration to enhance data insights. Develop key performance indicators (KPIs) and advanced business metrics for strategic decision-making. Master text and numerical data transformations to construct dynamic dashboards and reports. Optimize data models and DAX queries for improved performance and analytics accuracy. Learn to handle and debug calculations, and implement complex statistical and mathematical measures. Author(s) Greg Deckler is a seasoned business intelligence professional with extensive experience in using DAX and Power BI to provide actionable insights. As a recognized expert in the field, Greg brings practical knowledge of developing scalable BI solutions. His teaching approach is rooted in clarity and real-world application, making complex topics accessible to learners of all levels. Who is it for? This book is perfect for business professionals, BI developers, and data analysts with basic knowledge of the DAX language and associated tools. If you are looking to enhance your DAX skills and solve tough analytical challenges, this book is tailored for you. It's highly relevant for those aiming to optimize business intelligence workflows and improve data-driven decisions.

JMP Essentials, 3rd Edition

Grasp the essentials of JMP to generate rapid results. JMP Essentials: An Illustrated Guide for New Users, Third Edition, is designed for new or novice JMP users who need to generate meaningful analysis quickly. The book focuses on the most commonly used platforms and typical workflow of the user, from data importing, exploring, and visualizing to modeling and sharing results with others. Throughout the book, the authors emphasize results over theory, providing just the essential steps with corresponding screenshots. In most cases, each section completes a JMP task, which maximizes the book’s utility as a reference. This edition has new instructions and screenshots reflecting the features added to the latest release of JMP software, including updated sections on JMP Dashboard Builder, Query Builder, the Fit Model platform, JMP Public and JMP Live, and a more detailed look at the JMP website. Each chapter contains a family of features that are carefully crafted to first introduce you to basic features and then move on to more advanced topics. JMP Essentials: An Illustrated Guide for New Users, Third Edition, is the quickest and most accessible reference book available.

Intelligence at the Edge

Explore powerful SAS analytics and the Internet of Things! The world that we live in is more connected than ever before. The Internet of Things (IoT) consists of mechanical and electronic devices connected to one another and to software through the internet. Businesses can use the IoT to quickly make intelligent decisions based on massive amounts of data gathered in real time from these connected devices. IoT increases productivity, lowers operating costs, and provides insights into how businesses can serve existing markets and expand into new ones. Intelligence at the Edge: Using SAS with the Internet of Things is for anyone who wants to learn more about the rapidly changing field of IoT. Current practitioners explain how to apply SAS software and analytics to derive business value from the Internet of Things. The cornerstone of this endeavor is SAS Event Stream Processing, which enables you to process and analyze continuously flowing events in real time. With step-by-step guidance and real-world scenarios, you will learn how to apply analytics to streaming data. Each chapter explores a different aspect of IoT, including the analytics life cycle, monitoring, deployment, geofencing, machine learning, artificial intelligence, condition-based maintenance, computer vision, and edge devices.