talk-data.com talk-data.com

Topic

Spark

Apache Spark

big_data distributed_computing analytics

5

tagged

Activity Trend

71 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Jean-Georges Perrin ×

The Data Product Management In Action podcast, brought to you by Soda and executive producer Scott Hirleman, is a platform for data product management practitioners to share insights and experiences. We've released a special edition series of minisodes of our podcast. Recorded live at Data Connect 2024, our host Michael Toland engages in short, sweet, informative, and delightful conversations with five prevelant practitioners who are forging their way forward in data and technology.

About our host Michael Toland: Michael is a Product Management Coach and Consultant with Pathfinder Product, a Test Double Operation. Since 2016, Michael has worked on large-scale system modernizations and migration initiatives at Verizon. Outside his professional career, Michael serves as the Treasurer for the New Leaders Council, mentors with Venture for America, sings with the Columbus Symphony, and writes satire for his blog Dignified Product. He is excited to discuss data product management with the podcast audience. Connect with Michael on LinkedIn About our guest Jean-Georges Perrin: Jean-Georges “jgp” Perrin is the Chief Innovation Officer at AbeaData, where he focuses on developing cutting-edge data tooling. He chairs the Open Data Contract Standard (ODCS) at the Linux Foundation's Bitol project, co-founded the AIDA User Group, and has authored several influential books, including Implementing Data Mesh (O'Reilly) and Spark in Action, 2nd Edition (Manning). With over 25 years in IT, Jean-Georges is recognized as a Lifetime IBM Champion, a PayPal Champion, and a Data Mesh MVP. His expertise spans data engineering, governance, and the industrialization of data science. Outside of tech, he enjoys exploring Upstate New York and New England with his family. Connect with J-GP on LinkedIn.  All views and opinions expressed are those of the individuals and do not necessarily reflect their employers or anyone else. Join the conversation on LinkedIn. Apply to be a guest or nominate a practitioner.  Do you love what you're listening to? Please rate and review the podcast, and share it with fellow practitioners you know. Your support helps us reach more listeners and continue providing valuable insights!

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Hosted by Al Martin, VP, IBM Expert Services Delivery, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts. This week on Making Data Simple, we have Jean-Georges Perrin, Director of Engineering at weexperience. Together, they discuss — and compare — Apache Spark and Hadoop, and explain what it means to hold the title of IBM Champion. Show Notes 02:07 - Connect with Jean-Georges Perrin on LinkedIn and Twitter, and check out his website. 13:14 - Check out Jean-Georges' book on Apache Spark. 24:38 - What does it mean to be an IBM Champion? Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Spark in Action, Second Edition

The Spark distributed data processing platform provides an easy-to-implement tool for ingesting, streaming, and processing data from any source. In Spark in Action, Second Edition, you’ll learn to take advantage of Spark’s core features and incredible processing speed, with applications including real-time computation, delayed evaluation, and machine learning. Spark skills are a hot commodity in enterprises worldwide, and with Spark’s powerful and flexible Java APIs, you can reap all the benefits without first learning Scala or Hadoop. About the Technology Analyzing enterprise data starts by reading, filtering, and merging files and streams from many sources. The Spark data processing engine handles this varied volume like a champ, delivering speeds 100 times faster than Hadoop systems. Thanks to SQL support, an intuitive interface, and a straightforward multilanguage API, you can use Spark without learning a complex new ecosystem. About the Book Spark in Action, Second Edition, teaches you to create end-to-end analytics applications. In this entirely new book, you’ll learn from interesting Java-based examples, including a complete data pipeline for processing NASA satellite data. And you’ll discover Java, Python, and Scala code samples hosted on GitHub that you can explore and adapt, plus appendixes that give you a cheat sheet for installing tools and understanding Spark-specific terms. What's Inside Writing Spark applications in Java Spark application architecture Ingestion through files, databases, streaming, and Elasticsearch Querying distributed datasets with Spark SQL About the Reader This book does not assume previous experience with Spark, Scala, or Hadoop. About the Author Jean-Georges Perrin is an experienced data and software architect. He is France’s first IBM Champion and has been honored for 12 consecutive years. Quotes This book reveals the tools and secrets you need to drive innovation in your company or community. - Rob Thomas, IBM An indispensable, well-paced, and in-depth guide. A must-have for anyone into big data and real-time stream processing. - Anupam Sengupta, GuardHat Inc. This book will help spark a love affair with distributed processing. - Conor Redmond, InComm Product Control Currently the best book on the subject! - Markus Breuer, Materna IPS

Send us a text Al Martin is joined this week by guest Jean-Georges Perrin, Director of Engineering at weexperience. Together, they discuss — and compare — Apache Spark and Hadoop, and explain what it means to hold the title of IBM Champion.

Show Notes Check us out on: - YouTube - Apple Podcasts - Google Play Music - Spotify - TuneIn - Stitcher 00:10 - Connect with Producer Steve Moore on LinkedIn and Twitter.  00:15 - Connect with Producer Liam Seston on LinkedIn and Twitter.  00:20 - Connect with Producer Rachit Sharma on LinkedIn.  00:25 - Connect with Host Al Martin on LinkedIn and Twitter.  02:07 - Connect with Jean-Georges Perrin on LinkedIn and Twitter, and check out his website. 13:14 - Check out Jean-Georges' book on Apache Spark. 24:38 - What does it mean to be an IBM Champion? Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Summary

Apache Spark is a popular and widely used tool for a variety of data oriented projects. With the large array of capabilities, and the complexity of the underlying system, it can be difficult to understand how to get started using it. Jean George Perrin has been so impressed by the versatility of Spark that he is writing a book for data engineers to hit the ground running. In this episode he helps to make sense of what Spark is, how it works, and the various ways that you can use it. He also discusses what you need to know to get it deployed and keep it running in a production environment and how it fits into the overall data ecosystem.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Jean Georges Perrin, author of the upcoming Manning book Spark In Action 2nd Edition, about the ways that Spark is used and how it fits into the data landscape

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Spark is?

What are some of the main use cases for Spark? What are some of the problems that Spark is uniquely suited to address? Who uses Spark?

What are the tools offered to Spark users? How does it compare to some of the other streaming frameworks such as Flink, Kafka, or Storm? For someone building on top of Spark what are the main software design paradigms?

How does the design of an application change as you go from a local development environment to a production cluster?

Once your application is written, what is involved in deploying it to a production environment? What are some of the most useful strategies that you have seen for improving the efficiency and performance of a processing pipeline? What are some of the edge cases and architectural considerations that engineers should be considering as they begin to scale their deployments? What are some of the common ways that Spark is deployed, in terms of the cluster topology and the supporting technologies? What are the limitations of the Spark programming model?

What are the cases where Spark is the wrong choice?

What was your motivation for writing a book about Spark?

Who is the target audience?

What have been some of the most interesting or useful lessons that you have learned in the process of writing a book about Spark? What advice do you have for anyone who is considering or currently using Spark?

Contact Info

@jgperrin on Twitter Blog

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Book Discount

Use the code poddataeng18 to get 40% off of all of Manning’s products at manning.com

Links

Apache Spark Spark In Action Book code examples in GitHub Informix International Informix Users Group MySQL Microsoft SQL Server ETL (Extract, Transform, Load) Spark SQL and Spark In Action‘s chapter 11 Spark ML and Spark In Action‘s chapter 18 Spark Streaming (structured) and Spark In Action‘s chapter 10 Spark GraphX Hadoop Jupyter

Podcast Interview

Zeppelin Databricks IBM Watson Studio Kafka Flink

P