talk-data.com talk-data.com

Event

Data Engineering Podcast

2017-01-08 – 2025-11-24 Podcasts Visit website ↗

Activities tracked

227

This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Filtering by: Analytics ×

Sessions & talks

Showing 151–175 of 227 · Newest first

Search within this event →

Bridging The Gap Between Machine Learning And Operations At Iguazio

2021-03-02 Listen
podcast_episode

Summary The process of building and deploying machine learning projects requires a staggering number of systems and stakeholders to work in concert. In this episode Yaron Haviv, co-founder of Iguazio, discusses the complexities inherent to the process, as well as how he has worked to democratize the technologies necessary to make machine learning operations maintainable.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Yaron Haviv about Iguazio, a platform for end to end automation of machine learning applications using MLOps principles.

Interview

Introduction How did you get involved in the area of data science & analytics? Can you start by giving an overview of what Iguazio is and the story of how it got started? How would you characterize your target or typical customer? What are the biggest challenges that you see around building production grade workflows for machine learning?

How does Iguazio help to address those complexities?

For customers who have already invested in the technical and organizational capacity for data science and data engineering, how does Iguazio integrate with their environments? What are the responsibilities of a data engineer throughout the different stages of the lifecycle for a machine learning application? Can you describe how the Iguazio platform is architected?

How has the design of the platform evolved since you first began working on it? How have the industry best practices around bringing machine learning to production changed?

How do you approach testing/validation of machine learning applications and releasing them to production environments? (e.g. CI/CD) Once a model is in

How Shopify Is Building Their Production Data Warehouse Using DBT

2021-02-09 Listen
podcast_episode
Zeeshan Qureshi (Shopify) , Tobias Macey , Michelle Ark (Shopify)

Summary With all of the tools and services available for building a data platform it can be difficult to separate the signal from the noise. One of the best ways to get a true understanding of how a technology works in practice is to hear from people who are running it in production. In this episode Zeeshan Qureshi and Michelle Ark share their experiences using DBT to manage the data warehouse for Shopify. They explain how the structured the project to allow for multiple teams to collaborate in a scalable manner, the additional tooling that they added to address the edge cases that they have run into, and the optimizations that they baked into their continuous integration process to provide fast feedback and reduce costs. This is a great conversation about the lessons learned from real world use of a specific technology and how well it lives up to its promises.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Today’s episode of Data Engineering Podcast is sponsored by Datadog, the monitoring and analytics platform for cloud-scale infrastructure and applications. Datadog’s machine-learning based alerts, customizable dashboards, and 400+ vendor-backed integrations makes it easy to unify disparate data sources and pivot between correlated metrics and events for faster troubleshooting. By combining metrics, traces, and logs in one place, you can easily improve your application performance. Try Datadog free by starting a your 14-day trial and receive a free t-shirt once you install the agent. Go to dataengineeringpodcast.com/datadog today see how you can unify your monitoring today. Your host is Tobias Macey and today I’m interviewing Zeeshan Qureshi and Michelle Ark about how Shopify is building their production data warehouse platform with DBT

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what the Shopify platform is? What kinds of data sources are you working with?

Can you share some examples of the types of analysis, decisions, and products that you are building with the data that you manage? How have you structured your data teams to be able to deliver those projects?

What are the systems that you have in place, technological or otherwise, to allow you to support the needs of

System Observability For The Cloud Native Era With Chronosphere

2021-02-02 Listen
podcast_episode
Rob Skillington (Chronosphere) , Tobias Macey

Summary Collecting and processing metrics for monitoring use cases is an interesting data problem. It is eminently possible to generate millions or billions of data points per second, the information needs to be propagated to a central location, processed, and analyzed in timeframes on the order of milliseconds or single-digit seconds, and the consumers of the data need to be able to query the information quickly and flexibly. As the systems that we build continue to grow in scale and complexity the need for reliable and manageable monitoring platforms increases proportionately. In this episode Rob Skillington, CTO of Chronosphere, shares his experiences building metrics systems that provide observability to companies that are operating at extreme scale. He describes how the M3DB storage engine is designed to manage the pressures of a critical system component, the inherent complexities of working with telemetry data, and the motivating factors that are contributing to the growing need for flexibility in querying the collected metrics. This is a fascinating conversation about an area of data management that is often taken for granted.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Today’s episode of Data Engineering Podcast is sponsored by Datadog, the monitoring and analytics platform for cloud-scale infrastructure and applications. Datadog’s machine-learning based alerts, customizable dashboards, and 400+ vendor-backed integrations makes it easy to unify disparate data sources and pivot between correlated metrics and events for faster troubleshooting. By combining metrics, traces, and logs in one place, you can easily improve your application performance. Try Datadog free by starting a your 14-day trial and receive a free t-shirt once you install the agent. Go to dataengineeringpodcast.com/datadog today see how you can unify your monitoring today. Your host is Tobias Macey and today I’m interviewing Rob Skillington about Chronosphere, a scalable, reliable and customizable monitoring-as-a-service purpose built for cloud-native applications.

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Chronosphere and your motivation for turning it into a business? What are the

Making It Easier To Stick B2B Data Integration Pipelines Together With Hotglue

2021-01-26 Listen
podcast_episode
David Molot (Hotglue) , Hassan Syyid (Hotglue) , Tobias Macey

Summary Businesses often need to be able to ingest data from their customers in order to power the services that they provide. For each new source that they need to integrate with it is another custom set of ETL tasks that they need to maintain. In order to reduce the friction involved in supporting new data transformations David Molot and Hassan Syyid built the Hotlue platform. In this episode they describe the data integration challenges facing many B2B companies, how their work on the Hotglue platform simplifies their efforts, and how they have designed the platform to make these ETL workloads embeddable and self service for end users.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. This episode of Data Engineering Podcast is sponsored by Datadog, a unified monitoring and analytics platform built for developers, IT operations teams, and businesses in the cloud age. Datadog provides customizable dashboards, log management, and machine-learning-based alerts in one fully-integrated platform so you can seamlessly navigate, pinpoint, and resolve performance issues in context. Monitor all your databases, cloud services, containers, and serverless functions in one place with Datadog’s 400+ vendor-backed integrations. If an outage occurs, Datadog provides seamless navigation between your logs, infrastructure metrics, and application traces in just a few clicks to minimize downtime. Try it yourself today by starting a free 14-day trial and receive a Datadog t-shirt after installing the agent. Go to dataengineeringpodcast.com/datadog today to see how you can enhance visibility into your stack with Datadog. Your host is Tobias Macey and today I’m interviewing David Molot and Hassan Syyid about Hotglue, an embeddable data integration tool for B2B developers built on the Python ecosystem.

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Hotglue?

What was your motivation for starting a business to address this particular problem?

Who is the target user of Hotglue and what are their biggest data problems?

What are the types and sources of data that they are likely to be working with? How are they currently handling solutions for those problems? How does the introduction of Hotglue simplify or improve their work?

What is involved in getting Hotglue integrated into a given customer’s environment? How is Hotglue itself implemented?

How has the design or goals of the platform evolved since you first began building it? What were some of the initial assumptions that you had at the outset and how well have they held up as you progressed?

Once a customer has set up Hotglue what is their workflow for building and executing an ETL workflow?

What are their options for working with sources that aren’t supported out of the box?

What are the biggest design and implementation challenges that you are facing given the need for your product to be embedded in customer platforms and exposed to their end users? What are some of the most interesting, innovative, or unexpected ways that you have seen Hotglue used? What are the most interesting, unexpected, or challenging lessons that you have learned while building Hotglue? When is Hotglue the wrong choice? What do you have planned for the future of the product?

Contact Info

David

@davidmolot on Twitter LinkedIn

Hassan

hsyyid on GitHub LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

Hotglue Python

The Python Podcast.init

B2B == Business to Business Meltano

Podcast Episode

Airbyte Singer

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Using Your Data Warehouse As The Source Of Truth For Customer Data With Hightouch

2021-01-19 Listen
podcast_episode
Tejas Manohar (Hightouch) , Tobias Macey

Summary The data warehouse has become the central component of the modern data stack. Building on this pattern, the team at Hightouch have created a platform that synchronizes information about your customers out to third party systems for use by marketing and sales teams. In this episode Tejas Manohar explains the benefits of sourcing customer data from one location for all of your organization to use, the technical challenges of synchronizing the data to external systems with varying APIs, and the workflow for enabling self-service access to your customer data by your marketing teams. This is an interesting conversation about the importance of the data warehouse and how it can be used beyond just internal analytics.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. This episode of Data Engineering Podcast is sponsored by Datadog, a unified monitoring and analytics platform built for developers, IT operations teams, and businesses in the cloud age. Datadog provides customizable dashboards, log management, and machine-learning-based alerts in one fully-integrated platform so you can seamlessly navigate, pinpoint, and resolve performance issues in context. Monitor all your databases, cloud services, containers, and serverless functions in one place with Datadog’s 400+ vendor-backed integrations. If an outage occurs, Datadog provides seamless navigation between your logs, infrastructure metrics, and application traces in just a few clicks to minimize downtime. Try it yourself today by starting a free 14-day trial and receive a Datadog t-shirt after installing the agent. Go to dataengineeringpodcast.com/datadog today to see how you can enhance visibility into your stack with Datadog. Your host is Tobias Macey and today I’m interviewing Tejas Manohar about Hightouch, a data platform that helps you sync your customer data from your data warehouse to your CRM, marketing, and support tools

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Hightouch and your motivation for creating it? What are the main points of friction for teams who are trying to make use of customer data? Where is Hightouch positioned in the ecosystem of customer data tools such as Segment, Mixpanel

Bringing Feature Stores and MLOps to the Enterprise at Tecton

2021-01-05 Listen
podcast_episode

Summary As more organizations are gaining experience with data management and incorporating analytics into their decision making, their next move is to adopt machine learning. In order to make those efforts sustainable, the core capability they need is for data scientists and analysts to be able to build and deploy features in a self service manner. As a result the feature store is becoming a required piece of the data platform. To fill that need Kevin Stumpf and the team at Tecton are building an enterprise feature store as a service. In this episode he explains how his experience building the Michelanagelo platform at Uber has informed the design and architecture of Tecton, how it integrates with your existing data systems, and the elements that are required for well engineered feature store.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Do you want to get better at Python? Now is an excellent time to take an online course. Whether you’re just learning Python or you’re looking for deep dives on topics like APIs, memory mangement, async and await, and more, our friends at Talk Python Training have a top-notch course for you. If you’re just getting started, be sure to check out the Python for Absolute Beginners course. It’s like the first year of computer science that you never took compressed into 10 fun hours of Python coding and problem solving. Go to dataengineeringpodcast.com/talkpython today and get 10% off the course that will help you find your next level. That’s dataengineeringpodcast.com/talkpython, and don’t forget to thank them for supporting the show. You invest so much in your data infrastructure – you simply can’t afford to settle for unreliable data. Fortunately, there’s hope: in the same way that New Relic, DataDog, and other Application Performance Management solutions ensure reliable software and keep application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo’s end-to-end Data Observability Platform monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence. The platform uses machine learning to infer and learn your data, proactively identify data issues, assess its impact through lineage, and notify those who need to know before it impacts the business. By empowering data teams with end-to-end data reliability, Monte Carlo helps organizations save time, increase revenue, and restore trust in their data. Visit dataengineeringpodcast.com/montecarlo today to request a demo and see how Monte Carlo delivers data observability across your data infrastructure. The first 25 will receive a free, limited edition Monte Carlo hat! Your host is Tobias Macey and today I’m interviewing Kevin Stumpf about Tecton and the role that the feature store plays in a modern MLOps platform

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Tecton and your motivation for starting the business? For anyone who isn’t familiar with the concept, what is an example of a feature? How do you define what a feature store is? What role does a feature store play in the overall lifecycle of a machine learning p

Building A Self Service Data Platform For Alternative Data Analytics At YipitData

2020-12-15 Listen
podcast_episode

Summary As a data engineer you’re familiar with the process of collecting data from databases, customer data platforms, APIs, etc. At YipitData they rely on a variety of alternative data sources to inform investment decisions by hedge funds and businesses. In this episode Andrew Gross, Bobby Muldoon, and Anup Segu describe the self service data platform that they have built to allow data analysts to own the end-to-end delivery of data projects and how that has allowed them to scale their output. They share the journey that they went through to build a scalable and maintainable system for web scraping, how to make it reliable and resilient to errors, and the lessons that they learned in the process. This was a great conversation about real world experiences in building a successful data-oriented business.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. Your host is Tobias Macey and today I’m interviewing Andrew Gross, Bobby Muldoon, and Anup Segu about they are building pipelines at Yipit Data

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what YipitData does? What kinds of data sources and data assets are you working with? What is the composition of your data teams and how are they structured? Given the use of your data products in the financial sector how do you handle monitoring and alerting around data qualit

Proven Patterns For Building Successful Data Teams

2020-12-07 Listen
podcast_episode

Summary Building data products are complicated by the fact that there are so many different stakeholders with competing goals and priorities. It is also challenging because of the number of roles and capabilities that are necessary to go from idea to delivery. Different organizations have tried a multitude of organizational strategies to improve the success rate of these data teams with varying levels of success. In this episode Jesse Anderson shares the lessons that he has learned while working with dozens of businesses across industries to determine the team structures and communication styles that have generated the best results. If you are struggling to deliver value from big data, or just starting down the path of building the organizational capacity to turn raw information into valuable products then this is a conversation that you don’t want to miss.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. Your host is Tobias Macey and today I’m interviewing Jesse Anderson about best practices for organizing and managing data teams

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of how you view the mission and responsibilities of a data team?

What are the critical elements of a successful data team? Beyond the core pillars of data science, data engineering, and operations, what other specialized roles do you find hel

Streaming Data Integration Without The Code at Equalum

2020-11-30 Listen
podcast_episode

Summary The first stage of every good pipeline is to perform data integration. With the increasing pace of change and the need for up to date analytics the need to integrate that data in near real time is growing. With the improvements and increased variety of options for streaming data engines and improved tools for change data capture it is possible for data teams to make that goal a reality. However, despite all of the tools and managed distributions of those streaming engines it is still a challenge to build a robust and reliable pipeline for streaming data integration, especially if you need to expose those capabilities to non-engineers. In this episode Ido Friedman, CTO of Equalum, explains how they have built a no-code platform to make integration of streaming data and change data capture feeds easier to manage. He discusses the challenges that are inherent in the current state of CDC technologies, how they have architected their system to integrate well with existing data platforms, and how to build an appropriate level of abstraction for such a complex problem domain. If you are struggling with streaming data integration and change data capture then this interview is definitely worth a listen.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unloc

Keeping A Bigeye On The Data Quality Market

2020-11-23 Listen
podcast_episode

Summary One of the oldest aphorisms about data is "garbage in, garbage out", which is why the current boom in data quality solutions is no surprise. With the growth in projects, platforms, and services that aim to help you establish and maintain control of the health and reliability of your data pipelines it can be overwhelming to stay up to date with how they all compare. In this episode Egor Gryaznov, CTO of Bigeye, joins the show to explore the landscape of data quality companies, the general strategies that they are using, and what problems they solve. He also shares how his own product is designed and the challenges that are involved in building a system to help data engineers manage the complexity of a data platform. If you are wondering how to get better control of your own pipelines and the traps to avoid then this episode is definitely worth a listen.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Your host is Tobias Macey and today I’m interviewing Egor Gryaznov about the state of the industry for data quality management and what he is building at B

Self Service Data Management From Ingest To Insights With Isima

2020-11-17 Listen
podcast_episode

Summary The core mission of data engineers is to provide the business with a way to ask and answer questions of their data. This often takes the form of business intelligence dashboards, machine learning models, or APIs on top of a cleaned and curated data set. Despite the rapid progression of impressive tools and products built to fulfill this mission, it is still an uphill battle to tie everything together into a cohesive and reliable platform. At Isima they decided to reimagine the entire ecosystem from the ground up and built a single unified platform to allow end-to-end self service workflows from data ingestion through to analysis. In this episode CEO and co-founder of Isima Darshan Rawal explains how the biOS platform is architected to enable ease of use, the challenges that were involved in building an entirely new system from scratch, and how it can integrate with the rest of your data platform to allow for incremental adoption. This was an interesting and contrarian take on the current state of the data management industry and is worth a listen to gain some additional perspective.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Follow go.datafold.com/dataengineeringpodcast to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help y

Building A Cost Effective Data Catalog With Tree Schema

2020-11-10 Listen
podcast_episode
Grant Seward (Tree Schema) , Tobias Macey

Summary A data catalog is a critical piece of infrastructure for any organization who wants to build analytics products, whether internal or external. While there are a number of platforms available for building that catalog, many of them are either difficult to deploy and integrate, or expensive to use at scale. In this episode Grant Seward explains how he built Tree Schema to be an easy to use and cost effective option for organizations to build their data catalogs. He also shares the internal architecture, how he approached the design to make it accessible and easy to use, and how it autodiscovers the schemas and metadata for your source systems.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Follow go.datafold.com/dataengineeringpodcast to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Your host is Tobias Macey and today I’m interviewing Grant Seward about Tree Schema, a human friendly data catalog

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you have built at Tree Schema?

What was your motivation for creating it?

At what stage of maturity should a team or organization

Add Version Control To Your Data Lake With LakeFS

2020-11-03 Listen
podcast_episode
Einat Orr (Treeverse) , Oz Katz (Treeverse) , Tobias Macey

Summary Data lakes are gaining popularity due to their flexibility and reduced cost of storage. Along with the benefits there are some additional complexities to consider, including how to safely integrate new data sources or test out changes to existing pipelines. In order to address these challenges the team at Treeverse created LakeFS to introduce version control capabilities to your storage layer. In this episode Einat Orr and Oz Katz explain how they implemented branching and merging capabilities for object storage, best practices for how to use versioning primitives to introduce changes to your data lake, how LakeFS is architected, and how you can start using it for your own data platform.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. Your host is Tobias Macey and today I’m interviewing Einat Orr and Oz Katz about their work at Treeverse on the LakeFS system for versioning your data lakes the same way you version your code.

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what LakeFS is and why you built it?

There are a number of tools and platforms that support data virtualization and data versioning. How does LakeFS compare to the available options? (e.g. Alluxio, Denodo, Pachyderm, DVC, etc.)

What are the primary use cases that LakeFS enables? For someone who wants to use LakeFS what is involved in getting it set up? How is LakeFS implemented?

How has the design of the system changed or evolved since you began working on it? What assumptions did you have going into it which have since been invalidated or modified?

How does the workflow for an engineer or analyst change from working directly against S3 to running against the LakeFS interface? How do you handle merge conflicts and resolution?

What

Cloud Native Data Security As Code With Cyral

2020-10-26 Listen
podcast_episode

Summary One of the most challenging aspects of building a data platform has nothing to do with pipelines and transformations. If you are putting your workflows into production, then you need to consider how you are going to implement data security, including access controls and auditing. Different databases and storage systems all have their own method of restricting access, and they are not all compatible with each other. In order to simplify the process of securing your data in the Cloud Manav Mital created Cyral to provide a way of enforcing security as code. In this episode he explains how the system is architected, how it can help you enforce compliance, and what is involved in getting it integrated with your existing systems. This was a good conversation about an aspect of data management that is too often left as an afterthought.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today!

Better Data Quality Through Observability With Monte Carlo

2020-10-19 Listen
podcast_episode
Barr Moses (Monte Carlo) , Tobias Macey , Lior Gavish (Monte Carlo)

Summary In order for analytics and machine learning projects to be useful, they require a high degree of data quality. To ensure that your pipelines are healthy you need a way to make them observable. In this episode Barr Moses and Lior Gavish, co-founders of Monte Carlo, share the leading causes of what they refer to as data downtime and how it manifests. They also discuss methods for gaining visibility into the flow of data through your infrastructure, how to diagnose and prevent potential problems, and what they are building at Monte Carlo to help you maintain your data’s uptime.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Barr Moses and Lior Gavish about observability for your data pipelines and how they are addressing it at Monte Carlo.

Interview

Introduction How did you get involved in the area of data management? H

Rapid Delivery Of Business Intelligence Using Power BI

2020-10-12 Listen
podcast_episode
Rob Collie (Power Pivot Pro) , Tobias Macey

Summary Business intelligence efforts are only as useful as the outcomes that they inform. Power BI aims to reduce the time and effort required to go from information to action by providing an interface that encourages rapid iteration. In this episode Rob Collie shares his enthusiasm for the Power BI platform and how it stands out from other options. He explains how he helped to build the platform during his time at Microsoft, and how he continues to support users through his work at Power Pivot Pro. Rob shares some useful insights gained through his consulting work, and why he considers Power BI to be the best option on the market today for business analytics.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Equalum’s end to end data ingestion platform is relied upon by enterprises across industries to seamlessly stream data to operational, real-time analytics and machine learning environments. Equalum combines streaming Change Data Capture, replication, complex transformations, batch processing and full data management using a no-code UI. Equalum also leverages open source data frameworks by orchestrating Apache Spark, Kafka and others under the hood. Tool consolidation and linear scalability without the legacy platform price tag. Go to dataengineeringpodcast.com/equalum today to start a free 2 week test run of their platform, and don’t forget to tell them that we sent you. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Rob Collie about Microsoft’s Power BI platform and his

Self Service Real Time Data Integration Without The Headaches With Meroxa

2020-10-05 Listen
podcast_episode
DeVaris Brown (Meroxa) , Ali Hamidi (Meroxa) , Tobias Macey

Summary Analytical workloads require a well engineered and well maintained data integration process to ensure that your information is reliable and up to date. Building a real-time pipeline for your data lakes and data warehouses is a non-trivial effort, requiring a substantial investment of time and energy. Meroxa is a new platform that aims to automate the heavy lifting of change data capture, monitoring, and data loading. In this episode founders DeVaris Brown and Ali Hamidi explain how their tenure at Heroku informed their approach to making data integration self service, how the platform is architected, and how they have designed their system to adapt to the continued evolution of the data ecosystem.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing DeVaris Brown and Ali Hamidi about Meroxa, a new platform as a service for dat

Speed Up And Simplify Your Streaming Data Workloads With Red Panda

2020-09-29 Listen
podcast_episode

Summary Kafka has become a de facto standard interface for building decoupled systems and working with streaming data. Despite its widespread popularity, there are numerous accounts of the difficulty that operators face in keeping it reliable and performant, or trying to scale an installation. To make the benefits of the Kafka ecosystem more accessible and reduce the operational burden, Alexander Gallego and his team at Vectorized created the Red Panda engine. In this episode he explains how they engineered a drop-in replacement for Kafka, replicating the numerous APIs, that can scale more easily and deliver consistently low latencies with a much lower hardware footprint. He also shares some of the areas of innovation that they have found to help foster the next wave of streaming applications while working within the constraints of the existing Kafka interfaces. This was a fascinating conversation with an energetic and enthusiastic engineer and founder about the challenges and opportunities in the realm of streaming data.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. If you’re looking for a way to optimize your data engineering pipeline – with instant query performance – look no further than Qubz. Qubz is next-generation OLAP technology built for the scale of Big Data from UST Global, a renowned digital services provider. Qubz lets users and enterprises analyze data on the cloud and on-premise, with blazing speed, while eliminating the complex engineering required to operationalize analytics at scale. With an emphasis on visual data engineering, connectors for all major BI tools and data sources, Qubz allow users to query OLAP cubes with sub-second response times on hundreds of billions of rows. To learn more, and sign up for a free demo, visit dataengineeringpodcast.com/qubz. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to s

Cutting Through The Noise And Focusing On The Fundamentals Of Data Engineering With The Data Janitor

2020-09-22 Listen
podcast_episode

Summary Data engineering is a constantly growing and evolving discipline. There are always new tools, systems, and design patterns to learn, which leads to a great deal of confusion for newcomers. Daniel Molnar has dedicated his time to helping data professionals get back to basics through presentations at conferences and meetups, and with his most recent endeavor of building the Pipeline Data Engineering Academy. In this episode he shares advice on how to cut through the noise, which principles are foundational to building a successful career as a data engineer, and his approach to educating the next generation of data practitioners. This was a useful conversation for anyone working with data who has found themselves spending too much time chasing the latest trends and wishes to develop a more focused approach to their work.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Daniel Molnar about being a data janitor and how to cut through the hype to understand what to learn for the long run

Interview

Introduction How did you get involved in the area of data management? Can you start by describing your thoughts on the current state of the data management industry? What is your strategy for being effective in the face of so much complexity and conflicting needs for data? What are some of the common difficulties that you see data engineers contend with, whether technical or social/organizational? What are the core fundamentals that you thin

Building A Better Data Warehouse For The Cloud At Firebolt

2020-09-01 Listen
podcast_episode

Summary Data warehouse technology has been around for decades and has gone through several generational shifts in that time. The current trends in data warehousing are oriented around cloud native architectures that take advantage of dynamic scaling and the separation of compute and storage. Firebolt is taking that a step further with a core focus on speed and interactivity. In this episode CEO and founder Eldad Farkash explains how the Firebolt platform is architected for high throughput, their simple and transparent pricing model to encourage widespread use, and the use cases that it unlocks through interactive query speeds.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Eldad Farkash about Firebolt, a cloud data warehouse optimized for speed and elasticity on structured and semi-structured data

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what Firebolt is and your motivation for building it? How does Firebolt compare to other data warehouse technologies what unique features does it provide? The lines between a data warehouse and a data lake have been blurring in recent years. Where on that continuum does Firebolt lie? What are the unique use cases that Firebolt allows for? How do the performance characteristics of Firebolt change the ways that an engineer should think about data modeling? What technologies might someone replace with Firebolt? How is Firebolt architected and how has the design evolved since you first began working on it? What are some of the most challenging aspects of building a data warehouse platform that is optimized for speed? How do you ha

Metadata Management And Integration At LinkedIn With DataHub

2020-08-25 Listen
podcast_episode

Summary In order to scale the use of data across an organization there are a number of challenges related to discovery, governance, and integration that need to be solved. The key to those solutions is a robust and flexible metadata management system. LinkedIn has gone through several iterations on the most maintainable and scalable approach to metadata, leading them to their current work on DataHub. In this episode Mars Lan and Pardhu Gunnam explain how they designed the platform, how it integrates into their data platforms, and how it is being used to power data discovery and analytics at LinkedIn.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! If you’ve been exploring scalable, cost-effective and secure ways to collect and route data across your organization, RudderStack is the only solution that helps you turn your own warehouse into a state of the art customer data platform. Their mission is to empower data engineers to fully own their customer data infrastructure and easily push value to other parts of the organization, like marketing and product management. With their open-source foundation, fixed pricing, and unlimited volume, they are enterprise ready, but accessible to everyone. Go to dataengineeringpodcast.com/rudder to request a demo and get one free month of access to the hosted platform along with a free t-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Pardhu Gunnam and Mars Lan about DataHub, LinkedIn’s metadata management and data catalog platform

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what DataHub is and some of its back story?

What were you using at LinkedIn for metadata management prior to the introduction of DataHub? What was lacking in the previous solutions that motivated you to create a new platform?

There are a large number of other systems available for building data catalogs and tracking metadata, both open source and proprietary. What are the features of DataHub that would lead someone to use it in place of the other options? Who is the target audience for DataHub?

How do the needs of those end users influence or constrain your approach to the design and interfaces provided by DataHub?

Can you describe how DataHub is architected?

How has it evolved since yo

Exploring The TileDB Universal Data Engine

2020-08-17 Listen
podcast_episode

Summary Most databases are designed to work with textual data, with some special purpose engines that support domain specific formats. TileDB is a data engine that was built to support every type of data by using multi-dimensional arrays as the foundational primitive. In this episode the creator and founder of TileDB shares how he first started working on the underlying technology and the benefits of using a single engine for efficiently storing and querying any form of data. He also discusses the shifts in database architectures from vertically integrated monoliths to separately deployed layers, and the approach he is taking with TileDB cloud to embed the authorization into the storage engine, while providing a flexible interface for compute. This was a great conversation about a different approach to database architecture and how that enables a more flexible way to store and interact with data to power better data sharing and new opportunities for blending specialized domains.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Stavros Papadopoulos about TileDB, the universal storage engine

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what TileDB is and the problem that you are trying to solve with it?

What was your motivation for building it?

What are the main use cases or problem domains that you are trying to solve for?

What are the shortcomings of existing approaches to database design that prevent them from being useful for these applications?

What are the benefits of using matrices for data processing and domain modeling?

What are the challenges that you

Closing The Loop On Event Data Collection With Iteratively

2020-08-10 Listen
podcast_episode
Ondrej Hrebicek (Iteratively) , Patrick Thompson (Iteratively) , Tobias Macey

Summary Event based data is a rich source of information for analytics, unless none of the event structures are consistent. The team at Iteratively are building a platform to manage the end to end flow of collaboration around what events are needed, how to structure the attributes, and how they are captured. In this episode founders Patrick Thompson and Ondrej Hrebicek discuss the problems that they have experienced as a result of inconsistent event schemas, how the Iteratively platform integrates the definition, development, and delivery of event data, and the benefits of elevating the visibility of event data for improving the effectiveness of the resulting analytics. If you are struggling with inconsistent implementations of event data collection, lack of clarity on what attributes are needed, and how it is being used then this is definitely a conversation worth following.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! If you’ve been exploring scalable, cost-effective and secure ways to collect and route data across your organization, RudderStack is the only solution that helps you turn your own warehouse into a state of the art customer data platform. Their mission is to empower data engineers to fully own their customer data infrastructure and easily push value to other parts of the organization, like marketing and product management. With their open-source foundation, fixed pricing, and unlimited volume, they are enterprise ready, but accessible to everyone. Go to dataengineeringpodcast.com/rudder to request a demo and get one free month of access to the hosted platform along with a free t-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Patrick Thompson and Ondrej Hrebicek about Iteratively, a platform for enforcing consistent schemas for your event data

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Iteratively and your motivation for creating it? What are some of the ways that you have seen inconsistent message structures cause problems? What are some of the common anti-patterns that you have seen for managing the structure of event messages? What are the benefits that Iteratively provides for the different roles in an organization? Can you describe the workflow for a team using

A Practical Introduction To Graph Data Applications

2020-08-04 Listen
podcast_episode

Summary Finding connections between data and the entities that they represent is a complex problem. Graph data models and the applications built on top of them are perfect for representing relationships and finding emergent structures in your information. In this episode Denise Gosnell and Matthias Broecheler discuss their recent book, the Practitioner’s Guide To Graph Data, including the fundamental principles that you need to know about graph structures, the current state of graph support in database engines, tooling, and query languages, as well as useful tips on potential pitfalls when putting them into production. This was an informative and enlightening conversation with two experts on graph data applications that will help you start on the right track in your own projects.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Denise Gosnell and Matthias Broecheler about the recently published practitioner’s guide to graph data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what your goals are for the Practitioner’s Guide To Graph Data?

What was your motivation for writing a book to address this topic?

What do you see as the driving force behind the growing popularity of graph technologies in recent years? What are some of the common use cases/applications of graph data and graph traversal algorithms?

What are the core elements of graph thinking that data teams need to be aware of to be effective in identifying those cases in their existing systems?

What are the fundamental principles of graph technologies that data engineers should be familiar with?

Wha

Making Wind Energy More Efficient With Data At Turbit Systems

2020-07-21 Listen
podcast_episode
Michael Tegtmeier (Turbit Systems) , Tobias Macey

Summary Wind energy is an important component of an ecologically friendly power system, but there are a number of variables that can affect the overall efficiency of the turbines. Michael Tegtmeier founded Turbit Systems to help operators of wind farms identify and correct problems that contribute to suboptimal power outputs. In this episode he shares the story of how he got started working with wind energy, the system that he has built to collect data from the individual turbines, and how he is using machine learning to provide valuable insights to produce higher energy outputs. This was a great conversation about using data to improve the way the world works.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Michael Tegtmeier about Turbit, a machine learning powered platform for performance monitoring of wind farms

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you are building at Turbit and your motivation for creating the business? What are the most problematic factors that contribute to low performance in power generation with wind turbines? What is the current state of the art for accessing and analyzing data for wind farms? What information are you able to gather from the SCADA systems in the turbine?

How uniform is the availability and formatting of data from different manufacturers?

How are you handling data collection for the individual turbines?

How much information are you processing at the point of collection vs. sending to a centralized data store?

Can you describe the system architecture of Turbit and the lifecycle of turbine data as it propag