talk-data.com talk-data.com

Event

DataFramed

2019-04-01 – 2025-12-01 Podcasts Visit website ↗

Activities tracked

94

Welcome to DataFramed, a weekly podcast exploring how artificial intelligence and data are changing the world around us. On this show, we invite data & AI leaders at the forefront of the data revolution to share their insights and experiences into how they lead the charge in this era of AI. Whether you're a beginner looking to gain insights into a career in data & AI, a practitioner needing to stay up-to-date on the latest tools and trends, or a leader looking to transform how your organization uses data & AI, there's something here for everyone.

Join co-hosts Adel Nehme and Richie Cotton as they delve into the stories and ideas that are shaping the future of data. Subscribe to the show and tune in to the latest episode on the feed below.

Filtering by: GenAI ×

Sessions & talks

Showing 26–50 of 94 · Newest first

Search within this event →

#272 The Unreasonable Effectiveness of AI in Software Development with Eran Yahav, CTO of Tabnine

2025-01-06 Listen
podcast_episode
Richie (DataCamp) , Eran Yahav (Technion – Israel Institute of Technology)

AI is not just about writing code; it's about improving the entire software development process. From generating documentation to automating code reviews, AI tools are becoming indispensable. But how do you ensure the quality of AI-generated code? What strategies can you employ to maintain high standards while leveraging AI's capabilities? These are the questions developers must consider as they incorporate AI into their workflows. Eran Yahav is an associate professor at the Computer Science Department at the Technion – Israel Institute of Technology and co-founder and CTO of Tabnine (formerly Codota). Prior to that, he was a research staff member at the IBM T.J. Watson Research Center in New York (2004-2010). He received his Ph.D. from Tel Aviv University (2005) and his B.Sc. from the Technion in 1996. His research interests include program analysis, program synthesis, and program verification. Eran is a recipient of the prestigious Alon Fellowship for Outstanding Young Researchers, the Andre Deloro Career Advancement Chair in Engineering, the 2020 Robin Milner Young Researcher Award (POPL talk here), the ERC Consolidator Grant as well as multiple best paper awards at various conferences. In the episode, Richie and Eran explore AI's role in software development, the balance between AI assistance and manual coding, the impact of generative AI on code review and documentation, the evolution of developer tools, and the future of AI-driven workflows, and much more. Links Mentioned in the Show: TabnineConnect with EranCourse: Working with the OpenAI APIRelated Episode: Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AIRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#271 Creating High Quality AI Applications with Theresa Parker & Sudhi Balan, Rocket Software

2025-01-02 Listen
podcast_episode
Theresa Parker (Rocket Software) , Richie (DataCamp) , Sudhi Balan (Rocket Software)

AI features and products are the hottest area of software development. Creating high quality AI software is both essential and challenging for many businesses. In this episode, we look at retrieval augmented generation, an important technique for improving text generation quality in AI applications. Beyond technical measures, we look at the broader quality problem for AI applications. How do you ensure your AI applications are effective and secure? What steps should you take to integrate AI into your existing data governance frameworks? And how do you measure the success of these AI-driven solutions? Theresa Parker is the Director of Product Management at Rocket Software. She has 25 years of experience as a technology executive with a focus on software development processes, consultancy, and business development. Her recent work in content management focuses on the use of AI and RAG to improve content discoverability. Sudhi Balan is the Chief Technology Officer for AI & Cloud. He leads the AI and data teams for data modernization, driving AI adoption of Rocket's structured and unstructured data products. He also shapes AI strategy for Rocket’s infrastructure and app portfolio. He has earned patents for safe and scalable applications of transformational technology. Previously, he led digital transformation and hybrid cloud strategy for Rocket’s unstructured data business and was Senior Director of Product Development at ASG. In the episode, Richie, Theresa, and Sudhi explore retrieval-augmented generation, its applications in customer support and loan processing, the importance of data governance and privacy, the role of testing and guardrails in AI, cost management strategies, and the potential of AI to transform customer experiences, and much more. Links Mentioned in the Show: Rocket SoftwareConnect with Theresa and SudhiCourse: Retrieval Augmented Generation (RAG) with LangChainRelated Episode: Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AIRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Best of 2024: Data & AI Trends in 2024, with Tom Tunguz, General Partner at Theory Ventures

2024-12-30 Listen
podcast_episode
Don Chamberlin (IBM) , Alex Banks (Sunday Signal) , Tom Tunguz (Theory Ventures) , Lea Pica (Present Beyond Measure)

As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Rapid change seems to be the new norm within the data and AI space, and due to the ecosystem constantly changing, it can be tricky to keep up. Fortunately, any self-respecting venture capitalist looking into data and AI will stay on top of what’s changing and where the next big breakthroughs are likely to come from. We all want to know which important trends are emerging and how we can take advantage of them, so why not learn from a leading VC.  Tomasz Tunguz is a General Partner at Theory Ventures, a $235m early-stage venture capital firm. He blogs sat tomtunguz.com & co-authored Winning with Data. He has worked or works with Looker, Kustomer, Monte Carlo, Dremio, Omni, Hex, Spot, Arbitrum, Sui & many others. He was previously the product manager for Google's social media monetization team, including the Google-MySpace partnership, and managed the launches of AdSense into six new markets in Europe and Asia. Before Google, Tunguz developed systems for the Department of Homeland Security at Appian Corporation.  In the episode, Richie and Tom explore trends in generative AI, the impact of AI on professional fields, cloud+local hybrid workflows, data security, and changes in data warehousing through the use of integrated AI tools, the future of business intelligence and data analytics, the challenges and opportunities surrounding AI in the corporate sector. You'll also get to discover Tom's picks for the hottest new data startups. Links Mentioned in the Show: Tom’s BlogTheory VenturesArticle: What Air Canada Lost In ‘Remarkable’ Lying AI Chatbot Case[Course] Implementing AI Solutions in BusinessRelated Episode: Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision ScientistSign up to RADAR: AI...

Best of 2024: 50 Years of SQL with Don Chamberlin, Computer Scientist and Co-Inventor of SQL

2024-12-26 Listen
podcast_episode

As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. For our 200th episode, we bring you a special guest and taking a walk down memory lane—to the creation and development of one of the most popular programming languages in the world. Don Chamberlin is renowned as the co-inventor of SQL (Structured Query Language), the predominant database language globally, which he developed with Raymond Boyce in the mid-1970s. Chamberlin's professional career began at IBM Research in Yorktown Heights, New York, following a summer internship there during his academic years. His work on IBM's System R project led to the first SQL implementation and significantly advanced IBM’s relational database technology. His contributions were recognized when he was made an IBM Fellow in 2003 and later a Fellow of the Computer History Museum in 2009 for his pioneering work on SQL and database architectures. Chamberlin also contributed to the development of XQuery, an XML query language, as part of the W3C, which became a W3C Recommendation in January 2007. Additionally, he holds fellowships with ACM and IEEE and is a member of the National Academy of Engineering. In the episode, Richie and Don explore his early career at IBM and the development of his interest in databases alongside Ray Boyce, the database task group (DBTG), the transition to relational databases and the early development of SQL, the commercialization and adoption of SQL, how it became standardized, how it evolved and spread via open source, the future of SQL through NoSQL and SQL++ and much more.  Links Mentioned in the Show: The first-ever journal paper on SQL. SEQUEL: A Structured English Query LanguageDon’s Book: SQL++ for SQL Users: A TutorialSystem R: Relational approach to database managementSQL CoursesSQL Articles, Tutorials and Code-AlongsRelated Episode: Scaling Enterprise Analytics with...

Best of 2024: The Art of Prompt Engineering with Alex Banks, Founder and Educator, Sunday Signal

2024-12-23 Listen
podcast_episode
Don Chamberlin (IBM) , Alex Banks (Sunday Signal) , Tom Tunguz (Theory Ventures) , Lea Pica (Present Beyond Measure)

As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Since the launch of ChatGPT, one of the trending terms outside of ChatGPT itself has been prompt engineering. This act of carefully crafting your instructions is treated as alchemy by some and science by others. So what makes an effective prompt? Alex Banks has been building and scaling AI products since 2021. He writes Sunday Signal, a newsletter offering a blend of AI advancements and broader thought-provoking insights. His expertise extends to social media platforms on X/Twitter and LinkedIn, where he educates a diverse audience on leveraging AI to enhance productivity and transform daily life. In the episode, Alex and Adel cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, strategies for better prompting, chain of thought prompting, prompt engineering as a skill and career path, building your own AI tools rather than using consumer AI products, AI literacy, the future of LLMs and much more.  Links Mentioned in the Show: [Alex’s Free Course on DataCamp] Understanding Prompt EngineeringSunday SignalPrinciples by Ray Dalio: Life and WorkRelated Episode: [DataFramed AI Series #1] ChatGPT and the OpenAI Developer EcosystemRewatch sessions from RADAR: The Analytics Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Best of 2024: Data Storytelling and Visualization with Lea Pica from Present Beyond Measure

2024-12-19 Listen
podcast_episode
Don Chamberlin (IBM) , Alex Banks (Sunday Signal) , Tom Tunguz (Theory Ventures) , Lea Pica (Present Beyond Measure)

As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Your data project doesn't end once you have results. In order to have impact, you need to communicate those results to others. Presentations filled with endless tables and technical jargon can easily become tedious, leading your audience to lose interest or misunderstand your point. Data storytelling provides a solution to this: by creating a narrative around your results you can increase engagement and understanding from your audience. This is an art, and there are so many factors that contribute to visualizing data and creating a compelling story, it can be overwhelming. However, with the right approach, creating data stories can become second nature. In this special episode of DataFramed, we join forces with the Present Beyond Measure podcast to glean the best data presentation practices from one of the leading voices in the space. Lea Pica host of the Founder and Host of the Present Beyond Measure podcast and is a seasoned digital analytics practitioner, social media marketer and blogger with over 11 years of experience building search marketing and digital analytics practices for companies like Scholastic, Victoria’s Secret and Prudential. Present Beyond Measure’s mission is to bring their teachings to the digital marketing and web analytics communities, and empower anyone responsible for presenting data to an audience. In the full episode, Richie and Lea cover the full picture of data presentation, how to understand your audience, leverage hollywood storytelling, data storyboarding and visualization, the use of imagery in presentations, cognitive load management, the use of throughlines in presentations, how to improve your speaking and engagement skills, data visualization techniques in business setting and much more.  Links Mentioned in the Show: Present Beyond MeasureLea’s BookConnect with Lea on LinkedinHollywood Storytelling[Course] Data Storytelling Concepts New to DataCamp? Learn on the go using thea href="https://www.datacamp.com/mobile" rel="noopener...

#268 Scaling AI in the Enterprise with Abhas Ricky, Chief Strategy Officer at Cloudera

2024-12-09 Listen
podcast_episode
Richie (DataCamp) , Abhas Ricky (Cloudera)

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. AI adoption is not just about flashy innovations or big models. For businesses, it’s about solving real problems and driving measurable outcomes. That means aligning your data infrastructure, navigating compute costs, and understanding where AI adds the most value. How do enterprises prioritize their use cases? What role does hybrid play in scaling securely and efficiently? What’s the next frontier beyond generative AI? As Chief Strategy Officer, Abhas Ricky leads the overall corporate strategy for Cloudera and is responsible for creating the company vision, building the business and customer target operating model, communicating that with key stakeholders via clearly defined OKRs, and executing key transformational initiatives to realize that plan. He’s also tasked with driving growth and innovation and making appropriate build/buy partner decisions, including pricing and packaging, corporate development, and Cloudera’s innovation accelerator to launch new products. Previously, he served as chief of staff and vice president for business transformation at the company. Prior to the Cloudera/Hortonworks merger, he helped scale Hortonworks’ go-to-market efforts as global head of customer innovation and value management. A management consultant by training, he is passionate about driving action and change in the society and has led projects with multiple organizations including the World Economic Forum, Founders of the Future, and other nonprofits. In the episode, Richie and Abhas explore the evolving landscape of data security and governance, the importance of data as an asset, the role of AI in transforming business processes, the challenges of data sprawl, and the significance of hybrid AI solutions, and much more. Links Mentioned in the Show: ClouderaConnect with AbhasCourse: Understanding Cloud Computing CourseRelated Episode: Aligning AI with Enterprise Strategy with Leon Gordon, CEO at Onyx DataRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#264 From Gen AI to Gen BI with Omri Kohl, CEO and Co-Founder of Pyramid Analytics

2024-11-25 Listen
podcast_episode
Richie (DataCamp) , Omri Kohl (Pyramid Analytics)

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. The convergence of AI and business intelligence is creating new opportunities for innovation. As AI becomes more embedded in BI tools, the challenge lies in fostering a data-driven culture within organizations. How can professionals bridge the gap between intuition and data-driven decision-making? What strategies can be employed to cultivate a culture where data is at the forefront of business decisions? And how can AI tools be leveraged to make data insights more accessible to all employees? Omri Kohl is the CEO and co-founder of Pyramid Analytics, the Trusted Analytics Platform built for the enterprise. He leads Pyramid’s strategy and operations through a fast-growing data and analytics market. Kohl brings a deep understanding of analytics and AI technologies, valuable management experience, and a natural ability to challenge conventional thinking. Since Kohl founded Pyramid in 2009, it has achieved significant market success and customer growth. Kohl is a highly experienced entrepreneur with a proven track record developing and managing fast-growth companies. In the episode, Richie and Omri explore the evolution of BI with AI, the importance of data-driven culture, the role of generative BI in democratizing insights, the balance between intuition and data, and much more. Links Mentioned in the Show: Pyramid AnalyticsConnect with OmriPyramid Analytics GenBI DemoCourse: Introduction to Data CultureRelated Episode: Self-Service Business Intelligence with Sameer Al-Sakran, CEO at MetabaseRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#263 The Data to AI Journey with Gerrit Kazmaier, VP and GM of Data Analytics at Google Cloud

2024-11-21 Listen
podcast_episode
Gerrit Kazmaier (Google Cloud) , Richie (DataCamp)

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Integrating generative AI with robust databases is becoming essential. As organizations face a plethora of database options and AI tools, making informed decisions is crucial for enhancing customer experiences and operational efficiency. How do you ensure your AI systems are powered by high-quality data? And how can these choices impact your organization's success? Gerrit Kazmaier is the VP and GM of Data Analytics at Google Cloud. Gerrit leads the development and design of Google Cloud’s data technology, which includes data warehousing and analytics. Gerrit’s mission is to build a unified data platform for all types of data processing as the foundation for the digital enterprise. Before joining Google, Gerrit served as President of the HANA & Analytics team at SAP in Germany and led the global Product, Solution & Engineering teams for Databases, Data Warehousing and Analytics. In 2015, Gerrit served as the Vice President of SAP Analytics Cloud in Vancouver, Canada. In this episode, Richie and Gerrit explore the transformative role of AI in data tools, the evolution of dashboards, the integration of AI with existing workflows, the challenges and opportunities in SQL code generation, the importance of a unified data platform, leveraging unstructured data, and much more. Links Mentioned in the Show: Google CloudConnect with GerritThinking Fast and Slow by Daniel KahnemanCourse: Introduction to GCPRelated Episode: Not Only Vector Databases: Putting Databases at the Heart of AI, with Andi Gutmans, VP and GM of Databases at GoogleRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#262 Self-Service Business Intelligence with Sameer Al-Sakran, CEO at Metabase

2024-11-18 Listen
podcast_episode
Sameer Al-Sakran (Metabase) , Richie (DataCamp)

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. We’re often caught chasing the dream of “self-serve” data—a place where data empowers stakeholders to answer their questions without a data expert at every turn. But what does it take to reach that point? How do you shape tools that empower teams to explore and act on data without the usual bottlenecks? And with the growing presence of natural language tools and AI, is true self-service within reach, or is there still more to the journey? Sameer Al-Sakran is the CEO at Metabase, a low-code self-service analytics company. Sameer has a background in both data science and data engineering so he's got a practitioner's perspective as well as executive insight. Previously, he was CTO at Expa and Blackjet, and the founder of SimpleHadoop and Adopilot. In the episode, Richie and Sameer explore self-serve analytics, the evolution of data tools, GenAI vs AI agents, semantic layers, the challenges of implementing self-serve analytics, the problem with data-driven culture, encouraging efficiency in data teams, the parallels between UX and data projects, exciting trends in analytics, and much more. Links Mentioned in the Show: MetabaseConnect with SameerArticles from Metabase on jargon, information budgets, analytics mistakes, and data model mistakesCourse: Introduction to Data CultureRelated Episode: Towards Self-Service Data Engineering with Taylor Brown, Co-Founder and COO at FivetranRewatch Sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#261 Low Code Data Science with Michael Berthold, CEO and co-founder of KNIME

2024-11-14 Listen
podcast_episode
Adel (DataFramed) , Michael Berthold (KNIME)

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Data is no longer just for coders. With the rise of low-code tools, more people across organizations can access data insights without needing programming skills. But how can companies leverage these tools effectively? And what steps should they take to integrate them into existing workflows while upskilling their teams?  Michael Berthold is CEO and co-founder at KNIME, an open source data analytics company. He has more than 25 years of experience in data science, working in academia, most recently as a full professor at Konstanz University (Germany) and previously at University of California (Berkeley) and Carnegie Mellon, and in industry at Intel’s Neural Network Group, Utopy, and Tripos. Michael has published extensively on data analytics, machine learning, and artificial intelligence. In the episode, Adel and Michael explore low-code data science, the adoption of low-code data tools, the evolution of data science workflows, upskilling, low-code and code collaboration, data literacy, integration with AI and GenAI tools, the future of low-code data tools and much more.  Links Mentioned in the Show: KNIMEConnect with MichaelCode Along: Low-Code Data Science and Analytics with KNIMECourse: Introduction to KNIMERelated Episode: No-Code LLMs In Practice with Birago Jones & Karthik Dinakar, CEO & CTO at Pienso New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#258 Machine Learning for Ride Sharing at Lyft, with Rachita Naik, ML Engineer at Lyft

2024-11-04 Listen
podcast_episode
Rachita Naik (Lyft, Inc.) , Adel (DataFramed)

Machine learning and AI have become essential tools for delivering real-time solutions across industries. However, as these technologies scale, they bring their own set of challenges—complexity, data drift, latency, and the constant fight between innovation and reliability. How can we deploy models that not only enhance user experiences but also keep up with changing demands? And what does it take to ensure that these solutions are built to adapt, perform, and deliver value at scale? Rachita Naik is a Machine Learning (ML) Engineer at Lyft, Inc., and a recent graduate of Columbia University in New York. With two years of professional experience, Rachita is dedicated to creating impactful software solutions that leverage the power of Artificial Intelligence (AI) to solve real-world problems. At Lyft, Rachita focuses on developing and deploying robust ML models to enhance the ride-hailing industry’s pickup time reliability. She thrives on the challenge of addressing ML use cases at scale in dynamic environments, which has provided her with a deep understanding of practical challenges and the expertise to overcome them. Throughout her academic and professional journey, Rachita has honed a diverse skill set in AI and software engineering and remains eager to learn about new technologies and techniques to improve the quality and effectiveness of her work.  In the episode, Adel and Rachita explore how machine learning is leveraged at Lyft, the primary use-cases of ML in ride-sharing, what goes into an ETA prediction pipeline, the challenges of building large scale ML systems, reinforcement learning for dynamic pricing, key skills for machine learning engineers, future trends across machine learning and generative AI and much more.  Links Mentioned in the Show: Engineering at Lyft on MediumConnect with RachitaResearch Paper—A Better Match for Drivers and Riders: Reinforcement Learning at LyftCareer Track: Machine Learning EngineerRelated Episode: Why ML Projects Fail, and How to Ensure Success with Eric Siegel, Founder of Machine Learning Week, Former Columbia Professor, and Bestselling AuthorSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#255 Not Only Vector Databases: Putting Databases at the Heart of AI, with Andi Gutmans, VP and GM of Databases at Google

2024-10-24 Listen
podcast_episode
Andi Gutmans (Google) , Richie (DataCamp)

Generative AI and data are more interconnected than ever. If you want quality in your AI product, you need to be connected to a database with high quality data. But with so many database options and new AI tools emerging, how do you ensure you’re making the right choices for your organization? Whether it’s enhancing customer experiences or improving operational efficiency, understanding the role of your databases in powering AI is crucial.  Andi Gutmans is the General Manager and Vice President for Databases at Google. Andi’s focus is on building, managing, and scaling the most innovative database services to deliver the industry’s leading data platform for businesses. Prior to joining Google, Andi was VP Analytics at AWS running services such as Amazon Redshift. Prior to his tenure at AWS, Andi served as CEO and co-founder of Zend Technologies, the commercial backer of open-source PHP. Andi has over 20 years of experience as an open source contributor and leader. He co-authored open source PHP. He is an emeritus member of the Apache Software Foundation and served on the Eclipse Foundation’s board of directors. He holds a bachelor’s degree in computer science from the Technion, Israel Institute of Technology. In the episode, Richie and Andi explore databases and their relationship with AI and GenAI, key features needed in databases for AI, GCP database services, AlloyDB, federated queries in Google Cloud, vector databases, graph databases, practical use cases of AI in databases and much more.  Links Mentioned in the Show: GCPConnect with AndiAlloyDB for PostgreSQLCourse: Responsible AI Data ManagementRelated Episode: The Power of Vector Databases and Semantic Search with Elan Dekel, VP of Product at PineconeSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#248 Effective Product Management for AI with Marily Nika, Gen AI Product Lead at Google Assistant

2024-09-30 Listen
podcast_episode
Richie (DataCamp) , Marily Nika (Google)

Building and managing AI products comes with its own set of unique challenges. Especially when they are under intense scrutiny like mobile and home assistants have dealt with in recent years. From dealing with the unpredictable nature of machine learning models to ensuring that your product is both ethical and user-friendly, the path to success isn’t always clear. But how do you navigate these complexities and still deliver a product that meets business goals? What key steps can you take to align AI innovation with measurable outcomes and long-term success? Marily Nika is one of the world's leading thinkers on product management for artificial intelligence. At Google, she manages the generative AI product features for Google Assistant. Marily also founded AI Product Academy, where she runs a BootCamp on AI product management, and she teaches the subject on Maven. Previously, Marily was an AI Product Lead in Meta's Reality Labs, and the AI Product Lead for Google Glass. She is also an Executive Fellow at Harvard Business School. In the episode, Richie and Marily explore the unique challenges of AI product management, experimentation, ethical considerations in AI product management, collaboration, skills needed to succeed in AI product development, the career path to work in AI as a Product Manager, key metrics for AI products and much more.  Links Mentioned in the Show: Komo AIConnect with MarilyMarily’s Course: AI Product Management Bootcamp with CertificationSkill Track: AI Business FundamentalsRelated Episode: Building Human-Centered AI Experiences with Haris Butt, Head of Product Design at ClickUpRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#247 Aligning AI with Enterprise Strategy with Leon Gordon, CEO at Onyx Data

2024-09-26 Listen
podcast_episode
Leon Gordon (Onyx Data) , Adel (DataFramed)

Every organization today is exploring generative AI to drive value and push their business forward. But a common pitfall is that AI strategies often don’t align with business objectives, leading companies to chase flashy tools rather than focusing on what truly matters. How can you avoid these traps and ensure your AI efforts are not only innovative but also aligned with real business value?  Leon Gordon, is a leader in data analytics and AI. A current Microsoft Data Platform MVP based in the UK, founder of Onyx Data. During the last decade, he has helped organizations improve their business performance, use data more intelligently, and understand the implications of new technologies such as artificial intelligence and big data. Leon is an Executive Contributor to Brainz Magazine, a Thought Leader in Data Science for the Global AI Hub, chair for the Microsoft Power BI – UK community group and the DataDNA data visualization community as well as an international speaker and advisor. In the episode, Adel and Leon explore aligning AI with business strategy, building AI use-cases, enterprise AI-agents, AI and data governance, data-driven decision making, key skills for cross-functional teams, AI for automation and augmentation, privacy and AI and much more.  Links Mentioned in the Show: Onyx DataConnect with LeonLeon’s Linkedin Course - How to Build and Execute a Successful Data StrategySkill Track: AI Business FundamentalsRelated Episode: Generative AI in the Enterprise with Steve Holden, Senior Vice President and Head of Single-Family Analytics at Fannie MaeRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#246 AI and the Future of Art with Kent Keirsey, Founder & CEO at Invoke

2024-09-23 Listen
podcast_episode
Kent Keirsey (Invoke) , Adel (DataFramed)

AI has rapidly emerged as an incredibly transformative technology, and nowhere has its impact been felt more unexpectedly than in the creative arts. Just a decade ago, few would have predicted that AI would evolve from automating routine tasks to generating paintings, music, and even poetry. Yet today, the role of AI in the arts has entered mainstream conversations, even contributing to the debates seen in last year’s Hollywood strikes.  Kent Kersey is a creative technologist who has served as a Product and Business leader in startups across B2B, B2C, and Enterprise SaaS. He is the founder and CEO of Invoke, an open-source Enterprise platform built to empower creatives to co-create with custom/fine-tuned AI products. In the episode, Adel and Kent explore intellectual property and AI, the legal landscape surrounding AI models, open vs closed-source models, the future of creative teams and GenAI, innovations in GenAI, the role of artists in an AI-world, GenAI’s impact on the future of entertainment and much more.  Links Mentioned in the Show: InvokeHow to Use Midjourney: A Comprehensive Guide to AI-Generated Artwork CreationCourse: Generative AI ConceptsRelated Episode: Seeing the Data Layer Through Spatial Computing with Cathy Hackl and Irena CroninRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#245 Can We Make Generative AI Cheaper? With Natalia Vassilieva, Senior VP & Field CTO & Andy Hock, VP, Product & Strategy at Cerebras Systems

2024-09-19 Listen
podcast_episode
Andy Hock (Cerebras Systems) , Richie (DataCamp) , Natalia Vassilieva (Cerebras Systems)

With AI tools constantly evolving, the potential for innovation seems limitless. But with great potential comes significant costs, and the question of efficiency and scalability becomes crucial. How can you ensure that your AI models are not only pushing boundaries but also delivering results in a cost-effective way? What strategies can help reduce the financial burden of training and deploying models, while still driving meaningful business outcomes?  Natalia Vassilieva is the VP & Field CTO of ML at Cerebras Systems. Natalia has a wealth of experience in research and development in natural language processing, computer vision, machine learning, and information retrieval. As Field CTO, she helps drive product adoption and customer engagement for Cerebras Systems' wafer-scale AI chips. Previously, Natalia was a Senior Research Manager at Hewlett Packard Labs, leading the Software and AI group. She also served as the head of HP Labs Russia leading research teams focused on developing algorithms and applications for text, image, and time-series analysis and modeling. Natalia has an academic background, having been a part-time Associate Professor at St. Petersburg State University and a lecturer at the Computer Science Center in St. Petersburg, Russia. She holds a PhD in Computer Science from St. Petersburg State University. Andy Hock is the Senior VP, Product & Strategy at Cerebras Systems. Andy runs the product strategy and roadmap for Cerebras Systems, focusing on integrating AI research, hardware, and software to accelerate the development and deployment of AI models. He has 15 years of experience in product management, technical program management, and enterprise business development; over 20 years of experience in research, algorithm development, and data analysis for image processing; and  9 years of experience in applied machine learning and AI. Previously he was Product Management lead for Data and Analytics for Terra Bella at Google, where he led the development of machine learning-powered data products from satellite imagery. Earlier, he was Senior Director for Advanced Technology Programs at Skybox Imaging (which became Terra Bella following its acquisition by Google in 2014), and before that was a Senior Program Manager and Senior Scientist at Arete Associates. He has a Ph.D. in Geophysics and Space Physics from the University of California, Los Angeles. In the episode, Richie, Natalia and Andy explore the dramatic recent progress in generative AI, cost and infrastructure challenges in AI, Cerebras’ custom AI chips and other hardware innovations, quantization in AI models, mixture of experts, RLHF, relevant AI use-cases, centralized vs decentralized AI compute, the future of AI and much more.  Links Mentioned in the Show: CerebrasCerebras Launches the World’s Fastest AI InferenceConnect with Natalia and AndyCourse: Implementing AI Solutions in BusinessRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills witha...

#241 Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AI

2024-09-05 Listen
podcast_episode
Lin Qiao (Fireworks AI)

Lot’s of AI use-cases can start with big ideas and exciting possibilities, but turning those ideas into real results is where the challenge lies. How do you take a powerful model and make it work effectively in a specific business context? What steps are necessary to fine-tune and optimize your AI tools to deliver both performance and cost efficiency? And as AI continues to evolve, how do you stay ahead of the curve while ensuring that your solutions are scalable and sustainable?  Lin Qiao is the CEO and Co-Founder of Fireworks AI. She previously worked at Meta as a Senior Director of Engineering and as head of Meta's PyTorch, served as a Tech Lead at Linkedin, and worked as a Researcher and Software Engineer at IBM.  In the episode, Richie and Lin explore generative AI use cases, getting AI into products, foundational models, the effort required and benefits of fine-tuning models, trade-offs between models sizes, use cases for smaller models, cost-effective AI deployment, the infrastructure and team required for AI product development, metrics for AI success, open vs closed-source models, excitement for the future of AI development and much more.  Links Mentioned in the Show: Fireworks.aiHugging Face - Preference Tuning LLMs with Direct Preference Optimization MethodsConnect with LinCourse - Artificial Intelligence (AI) StrategyRelated Episode: Creating Custom LLMs with Vincent Granville, Founder, CEO & Chief Al Scientist at GenAltechLab.comRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#240 Generative AI in the Enterprise with Steve Holden, Senior Vice President and Head of Single-Family Analytics at Fannie Mae

2024-09-02 Listen
podcast_episode
Steve Holden (Fannie Mae)

The rapid rise of generative AI is changing how businesses operate, but with this change comes new challenges. How do you navigate the balance between innovation and risk, especially in a regulated industry? As organizations race to adopt AI, it’s crucial to ensure that these technologies are not only transformative but also responsible. What steps can you take to harness AI’s potential while maintaining control and transparency? And how can you build excitement and trust around AI within your organization, ensuring that everyone is ready to embrace this new era? Steve Holden is the Senior Vice President and Head of Single-Family Analytics at Fannie Mae, leading a team of data science professionals, supporting loan underwriting, pricing and acquisition, securitization, loss mitigation, and loan liquidation for the company’s multi-trillion-dollar Single-Family mortgage portfolio. He is also responsible for all Generative AI initiatives across the enterprise. His team provides real-time analytic solutions that guide thousands of daily business decisions necessary to manage this extensive mortgage portfolio. The team comprises experts in econometric models, machine learning, data engineering, data visualization, software engineering, and analytic infrastructure design. Holden previously served as Vice President of Credit Portfolio Management Analytics at Fannie Mae. Before joining Fannie Mae in 1999, he held several analytic leadership roles and worked on economic issues at the Economic Strategy Institute and the U.S. Bureau of Labor Statistics. In the episode Adel and Steve explore opportunities in generative AI, building a GenAI program, use-case prioritization, driving excitement and engagement for an AI-first culture, skills transformation, governance as a competitive advantage, challenges of scaling AI, future trends in AI, and much more.  Links Mentioned in the Show: Fannie MaeSteve’s recent DataCamp Webinar: Bringing Generative AI to the EnterpriseVideo: Andrej Karpathy - [1hr Talk] Intro to Large Language ModelsSkill Track - AI Business FundamentalsRelated Episode: Generative AI at EY with John Thompson, Head of AI at EYRewatch sessions from RADAR: AI Edition Join the DataFramed team! Data Evangelist Data & AI Video Creator New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#235 Developing Generative AI Applications with Dmitry Shapiro, CEO of MindStudio

2024-08-15 Listen
podcast_episode
Dmitry Shapiro (MindStudio) , Richie (DataCamp)

One of the big use cases of generative AI is having small applications to solve specific tasks. These are known as AI agents or AI assistants. Since they’re small and narrow in scope, you probably want to create and use lots of them, which means you need to be able to create them cheaply and easily. I’m curious as to how you go about doing this from an organizational point of view. Who needs to be involved? What’s the workflow and what technology do you need? Dmitry Shapiro is the CEO of MindStudio. He was previously the CTO at MySpace and a product manager at Google. Dmitry is also a serial entrepreneur, having founded the web-app development platform Koji, acquired by Linktree, and Veoh Networks, an early YouTube competitor. He has extensive experience in building and managing engineering, product, and AI teams. In the episode, Richie and Dmitry explore generative AI applications, AI in SaaS, approaches to AI implementation, selecting processes for automation, changes in sales and marketing roles, MindStudio, AI governance and privacy concerns, cost management, the limitations and future of AI assistants, and much more. Links Mentioned in the Show: MindStudioConnect with Dmitry[Webinar] Dmitry at RADAR: From Learning to Earning: Navigating the AI Job LandscapeRelated Episode: Designing AI Applications with Robb Wilson, Co-Founder & CEO at Onereach.aiRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

#234 High Performance Generative AI Applications with Ram Sriharsha, CTO at Pinecone

2024-08-12 Listen
podcast_episode
Richie (DataCamp) , Ram Sriharsha (Pinecone)

Perhaps the biggest complaint about generative AI is hallucination. If the text you want to generate involves facts, for example, a chatbot that answers questions, then hallucination is a problem. The solution to this is to make use of a technique called retrieval augmented generation, where you store facts in a vector database and retrieve the most appropriate ones to send to the large language model to help it give accurate responses. So, what goes into building vector databases and how do they improve LLM performance so much? Ram Sriharsha is currently the CTO at Pinecone. Before this role, he was the Director of Engineering at Pinecone and previously served as Vice President of Engineering at Splunk. He also worked as a Product Manager at Databricks. With a long history in the software development industry, Ram has held positions as an architect, lead product developer, and senior software engineer at various companies. Ram is also a long time contributor to Apache Spark.  In the episode, Richie and Ram explore common use-cases for vector databases, RAG in chatbots, steps to create a chatbot, static vs dynamic data, testing chatbot success, handling dynamic data, choosing language models, knowledge graphs, implementing vector databases, innovations in vector data bases, the future of LLMs and much more.  Links Mentioned in the Show: PineconeWebinar - Charting the Path: What the Future Holds for Generative AICourse - Vector Databases for Embeddings with PineconeRelated Episode: The Power of Vector Databases and Semantic Search with Elan Dekel, VP of Product at PineconeRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

#233 Generative AI at EY with John Thompson, Head of AI at EY

2024-08-08 Listen
podcast_episode
Richie (DataCamp) , John Thompson (EY)

By now, many of us are convinced that generative AI chatbots like ChatGPT are useful at work. However, many executives are rightfully worried about the risks from having business and customer conversations recorded by AI chatbot platforms. Some privacy and security-conscious organizations are going so far as to block these AI platforms completely. For organizations such as EY, a company that derives value from its intellectual property, leaders need to strike a balance between privacy and productivity.  John Thompson runs the department for the ideation, design, development, implementation, & use of innovative Generative AI, Traditional AI, & Causal AI solutions, across all of EY's service lines, operating functions, geographies, & for EY's clients. His team has built the world's largest, secure, private LLM-based chat environment. John also runs the Marketing Sciences consultancy, advising clients on monetization strategies for data. He is the author of four books on data, including "Data for All' and "Causal Artificial Intelligence". Previously, he was the Global Head of AI at CSL Behring, an Adjunct Professor at Lake Forest Graduate School of Management, and an Executive Partner at Gartner. In the episode, Richie and John explore the adoption of GenAI at EY, data privacy and security, GenAI use cases and productivity improvements, GenAI for decision making, causal AI and synthetic data, industry trends and predictions and much more.  Links Mentioned in the Show: Azure OpenAICausality by Judea Pearl[Course] AI EthicsRelated Episode: Data & AI at Tesco with Venkat Raghavan, Director of Analytics and Science at TescoCatch John talking about AI Maturity this SeptemberRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#229 Inside Meta's Biggest and Best Open-Source AI Model Yet with Thomas Scialom, Co-Creator of Llama3

2024-07-25 Listen
podcast_episode
Adel (DataFramed) , Thomas Scialom (Meta AI)

Meta has been at the absolute edge of the open-source AI ecosystem, and with the recent release of Llama 3.1, they have officially created the largest open-source model to date. So, what's the secret behind the performance gains of Llama 3.1? What will the future of open-source AI look like? Thomas Scialom is a Senior Staff Research Scientist (LLMs) at Meta AI, and is one of the co-creators of the Llama family of models. Prior to joining Meta, Thomas worked as a Teacher, Lecturer, Speaker and Quant Trading Researcher.  In the episode, Adel and Thomas explore Llama 405B it’s new features and improved performance, the challenges in training LLMs, best practices for training LLMs, pre and post-training processes, the future of LLMs and AI, open vs closed-sources models, the GenAI landscape, scalability of AI models, current research and future trends and much more.  Links Mentioned in the Show: Meta - Introducing Llama 3.1: Our most capable models to dateDownload the Llama Models[Course] Working with Llama 3[Skill Track] Developing AI ApplicationsRelated Episode: Creating Custom LLMs with Vincent Granville, Founder, CEO & Chief Al Scientist at GenAltechLab.comRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#228 Are Spreadsheets Still Relevant For Data Analysis? with Jordan Goldmeier, Author of Data Smart

2024-07-22 Listen
podcast_episode
Jordan Goldmeier (Booz Allen Hamilton; The Perduco Group; EY; Excel TV; Wake Forest University; Anarchy Data) , Adel (DataFramed)

Excel often gets unfair criticism from data practitioners, many of us will remember a time when Excel was looked down upon—why would anyone use Excel when we have powerful tools like Python, R, SQL, or BI tools? However,  like it or not, Excel is here to stay, and there’s a meme, bordering on reality, that Excel is carrying a large chunk of the world’s GDP. But when it really comes down to it, can you do data science in Excel? Jordan Goldmeier is an entrepreneur, a consultant, a best-selling author of four books on data, and a digital nomad. He started his career as a data scientist in the defense industry for Booz Allen Hamilton and The Perduco Group, before moving into consultancy with EY, and then teaching people how to use data at Excel TV, Wake Forest University, and now Anarchy Data. He also has a newsletter called The Money Making Machine, and he's on a mission to create 100 entrepreneurs.  In the episode, Adel and Jordan explore excel in data science, excel’s popularity, use cases for Excel in data science, the impact of GenAI on Excel, Power Query and data transformation, advanced Excel features, Excel for prototyping and generating buy-in, the limitations of Excel and what other tools might emerge in its place, and much more.  Links Mentioned in the Show: Data Smart: Using Data Science to Transform Information Into Insight by Jordan Goldmeier[Webinar] Developing a Data Mindset: How to Think, Speak, and Understand Data[Course] Data Analysis in ExcelRelated Episode: Do Spreadsheets Need a Rethink? With Hjalmar Gislason, CEO of GRIDRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

#227 DataFramed x Analytics On Fire: Riding the AI Hype Cycle with Mico Yuk, Co-Founder at Data Storytelling Academy

2024-07-18 Listen
podcast_episode
Mico Yuk (Data Storytelling Academy) , Richie (DataCamp)

This special episode of DataFramed was made in collaboration with Analytics on Fire! Nowadays, the hype around generative AI is only the tip of the iceberg. There are so many ideas being touted as the next big thing that it’s difficult to keep up. More importantly, it’s challenging to discern which ideas will become the next ChatGPT and which will end up like the next NFT. How do we cut through the noise? Mico Yuk is the Community Manager at Acryl Data and Co-Founder at Data Storytelling Academy. Mico is also an SAP Mentor Alumni, and the Founder of the popular weblog, Everything Xcelsius and the 'Xcelsius Gurus’ Network. She was named one of the Top 50 Analytics Bloggers to follow, as-well-as a high-regarded BI influencer and sought after global keynote speaker in the Analytics ecosystem.  In the episode, Richie and Mico explore AI and productivity at work, the future of work and AI, GenAI and data roles, AI for training and learning, training at scale, decision intelligence, soft skills for data professionals, genAI hype and much more.  Links Mentioned in the Show: Analytics on Fire PodcastData Visualization for Dummies by Mico Yuk and Stephanie DiamondConnect with Miko[Skill Track] AI FundamentalsRelated Episode: What to Expect from AI in 2024 with Craig S. Smith, Host of the Eye on A.I PodcastRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business