talk-data.com talk-data.com

Event

DataFramed

2019-04-01 – 2025-12-01 Podcasts Visit website ↗

Activities tracked

300

Welcome to DataFramed, a weekly podcast exploring how artificial intelligence and data are changing the world around us. On this show, we invite data & AI leaders at the forefront of the data revolution to share their insights and experiences into how they lead the charge in this era of AI. Whether you're a beginner looking to gain insights into a career in data & AI, a practitioner needing to stay up-to-date on the latest tools and trends, or a leader looking to transform how your organization uses data & AI, there's something here for everyone.

Join co-hosts Adel Nehme and Richie Cotton as they delve into the stories and ideas that are shaping the future of data. Subscribe to the show and tune in to the latest episode on the feed below.

Sessions & talks

Showing 176–200 of 300 · Newest first

Search within this event →

#169 Unlocking Efficiency Gains Through Process Mining with Wil van der Aalst and Cong Yu, Chief Scientist and VP Engineering at Celonis

2023-12-28 Listen
podcast_episode
Wil van der Aalst (RWTH Aachen University; Celonis; Fraunhofer FIT; Tilburg University) , Richie (DataCamp) , Cong Yu (Celonis)

Regardless of profession, the work we do leaves behind a trace of actions that help us achieve our goals. This is especially true for those that work with data. For large enterprises where there are seemingly countless processes happening at any one time, keeping track of these processes is crucial. Given the scale of these processes, one small efficiency gain can leads to a staggering amount of time and money saved. Process mining is a data-driven approach to process analysis that uses event logs to extract process-related information. It can separate inferred facts, from exact truths, and uncover what really happens in a variety of operations.  Wil van der Aalst is a full professor at RWTH Aachen University, leading the Process and Data Science (PADS) group. He is also the Chief Scientist at Celonis, part-time affiliated with the Fraunhofer FIT, and a member of the Board of Governors of Tilburg University.  His research interests include process mining, Petri nets, business process management, workflow management, process modeling, and process analysis. Wil van der Aalst has published over 275 journal papers, 35 books (as author or editor), 630 refereed conference/workshop publications, and 85 book chapters. Cong Yu leads the CeloAI group at Celonis focusing on bringing advanced AI technologies to EMS products, building up capabilities for their knowledge platform, and ultimately helping enterprises in reducing process inefficiencies and achieving operational excellence. Previously, Cong was Principal (Research) Scientist / Research Director at Google Research NYC from September 2010 to July 2022, leading the NYSD/Beacon Research Group, and also taught at NYU Courant Institute of Mathematical Sciences.  In the episode, Wil, Cong, and Richie explore process mining and its development over the past 25 years, the differences between process mining and ML, AI, and data mining, popular use cases of process mining, adoption from large enterprises like BMW, HP, and Dell, the requirements for an effective process mining system, the role of predictive analytics and data engineering in process mining, how to scale process mining systems, prospects within the field and much more. Links Mentioned in the Show: CelonisGartner’s Magic Quadrant for Process MiningPM4PyProcess Query Language (PQL)[Couse] Business Process Analytics in R

#168 Causal AI in Business with Paul Hünermund, Assistant Professor, Copenhagen Business School

2023-12-18 Listen
podcast_episode
Paul Hünermund (Copenhagen Business School) , Richie (DataCamp)

There are a few caveats to using generative AI tools, those caveats have led to a few tips that have quickly become second nature to those that use LLMs like ChatGPT. The main one being: have the domain knowledge to validate the output in order to avoid hallucinations. Hallucinations are one of the weak spots for LLMs due to the nature of the way they are built, as they are trained to correlate data in order to predict what might come next in an incomplete sequence. Does this mean that we’ll always have to be wary of the output of AI products, with the expectation that there is no intelligent decision-making going on under the hood? Far from it. Causal AI is bound by reason—rather than looking at correlation, these exciting systems are able to focus on the underlying causal mechanisms and relationships. As the AI field rapidly evolves, Causal AI is an area of research that is likely to have a huge impact on a huge number of industries and problems.  Paul Hünermund is an Assistant Professor of Strategy and Innovation at Copenhagen Business School. In his research, Dr. Hünermund studies how firms can leverage new technologies in the space of machine learning and artificial intelligence such as Causal AI for value creation and competitive advantage. His work explores the potential for biases in organizational decision-making and ways for managers to counter them. It thereby sheds light on the origins of effective business strategies in markets characterized by a high degree of technological competition and the resulting implications for economic growth and environmental sustainability.  His work has been published in The Journal of Management Studies, the Econometrics Journal, Research Policy, Journal of Product Innovation Management, International Journal of Industrial Organization, MIT Sloan Management Review, and Harvard Business Review, among others.  In the full episode, Richie and Paul explore Causal AI, its differences when compared to other forms of AI, use cases of Causal AI in fields like drug development, marketing, manufacturing, and defense. They also discuss how Causal AI contributes to better decision-making, the role of domain experts in getting accurate results, what happens in the early stages of Causal AI adoption, exciting new developments within the Causal AI space and much more.  Links Mentioned in the Show: Causal Data Science in BusinessCausal AI by causaLensIntro to Causal AI Using the DoWhy Library in PythonLesson: Inference (causal) models

#167 What to Expect from AI in 2024 with Craig S. Smith, Host of the Eye on A.I Podcast

2023-12-11 Listen
podcast_episode
Craig S. Smith (The New York Times; Wall Street Journal) , Richie (DataCamp)

Over the past year, we’ve seen a full hype cycle of hysteria and discourse surrounding generative AI. It almost seems difficult to think back to a time when no one had used ChatGPT. We are in the midst of the fourth industrial revolution, and technology is moving rapidly. Better performing and more capable models are being released at a stunning rate, and with the growing presence of multimodal AI, can we expect another whirlwind year that vastly changes the state of play within AI again? Who might be able to provide insight into what is to come in 2024? Craig S. Smith is an American journalist, former executive of The New York Times, and host of the podcast Eye on AI. Until January 2000, he wrote for The Wall Street Journal, most notably covering the rise of the religious movement Falun Gong in China. He has reported for the Times from more than 40 countries and has covered several conflicts, including the 2001 invasion of Afghanistan, the 2003 war in Iraq, and the 2006 Israeli-Lebanese war. He retired from the Times in 2018 and now writes about artificial intelligence for the Times and other publications. He was a special Government employee for the National Security Commission on Artificial Intelligence until the commission's end in October 2021.  In the episode, Richie and Craig explore the 2023 advancements in generative AI, such as GPT-4, and the evolving roles of companies like Anthropic and Meta, practical AI applications for research and image generation, challenges in large language models, the promising future of world models and AI agents, the societal impacts of AI, the issue of misinformation, computational constraints, and the importance of AI literacy in the job market, the transformative potential of AI in various sectors and much more.  Links Mentioned in the Show: Eye on AIWayveAnthropicCohereMidjourneyYann Lecun

#166 Optimizing Cloud Data Warehouses with Salim Syed, VP, Head of Engineering at Capital One Software

2023-12-04 Listen
podcast_episode
Adel (DataFramed) , Salim Syed (Capital One Slingshot)

Effective data management has become a cornerstone of success in our digital era. It involves not just collecting and storing information but also organizing, securing, and leveraging data to drive progress and innovation. Many organizations turn to tools like Snowflake for advanced data warehousing capabilities. However, while Snowflake enhances data storage and access, it's not a complete solution for all data management challenges. To address this, tools like Capital One’s Slingshot can be used alongside Snowflake, helping to optimize costs and refine data management strategies. Salim Syed is a VP, Head of engineering for Capital One Slingshot product. He led Capital One’s data warehouse migration to AWS and is a specialist in deploying Snowflake to a large enterprise. Salim’s expertise lies in developing Big Data (Lake) and Data Warehouse strategy on the public cloud. He leads an organization of more than 100 data engineers, support engineers, DBAs and full stack developers in driving enterprise data lake, data warehouse, data management and visualization platform services. Salim has more than 25 years of experience in the data ecosystem. His career started in data engineering where he built data pipelines and then moved into maintenance and administration of large database servers using multi-tier replication architecture in various remote locations. He then worked at CodeRye as a database architect and at 3M Health Information Systems as an enterprise data architect. Salim has been at Capital One for the past six years. In this episode, Adel and Salim explore cloud data management and the evolution of Slingshot into a major multi-tenant SaaS platform, the shift from on-premise to cloud-based data governance, the role of centralized tooling, strategies for effective cloud data management, including data governance, cost optimization, and waste reduction as well as insights into navigating the complexities of data infrastructure, security, and scalability in the modern digital era. Links Mentioned in the Show: Capital One SlingshotSnowflakeCourse: Introduction to Data WarehousingCourse: Introduction to Snowflake

#165 Data & AI for Good, with Marga Hoek, Founder & CEO, Business for Good

2023-11-27 Listen
podcast_episode
Marga Hoek (Business for Good)

There's often a debate in technology ethics on whether technology is neutral or not. On one hand, critics have rightfully pointed out examples of technology exacerbating the climate crisis, amplifying bias as we've seen in our recent episode with Dr. Joy Buolamwini, or contributing to the spread of misinformation and disinformation. Conversely, we cannot deny the many wonderful things technology has given us, from better healthcare outcomes, to the ability to communicate wherever we are in the world, or to elevate the quality of life of everyone on the planet. It is this duality, that today's guest, Marga Hoek, points to as to why technology is neutral, and why it is in our hands to use it for good. Marga Hoek is a true visionary on sustainable business, capital, and technology and a successful business leader. As a three-time CEO, Board Member, Chair, and Founder of Business for Good, she applies her vision on how business can be a true force for good in practice. As a bestselling and multi-award-winning author, member of Thinkers50, and one of the most in-demand speakers on sustainable business and ESG investment, Marga Hoek has inspired many companies and leaders worldwide. She is also appreciated as a global voice for G20 and G7 Intergovernmental forums, international climate meetings and COPs, and many other prestigious global conferences.  In the episode, Adel and Marga explore the fourth industrial revolution and the eight technologies that combine to build it, the ethical application of technology and how it can be the biggest lever to combating climate change and building a sustainable society, how data and AI enable real-time information sharing leading to better early warning systems related to the environment, use cases of tech for good initiatives, how collaboration can bridge the gap in investment for sustainable business ventures and a lot more.  Links Mentioned In the Show: Tech for GoodAzure FarmBeatsCapgemini in the Mojave DesertReDeTec 3D PrintingFramlab 3D Printed Homes for the Unsheltered

#164 Driving Data Democratization with Lilac Schoenbeck, Vice President of Strategic Initiatives at Rocket Software

2023-11-20 Listen
podcast_episode
Lilac Schoenbeck (Rocket Software)

The consequences of data not being easily accessible within an organization are profound. Good decision-making often relies on good information, and with crucial insights locked behind closed doors, decision-makers may have to rely on incomplete information, stifling their ability to innovate through a lack of comprehensive data access or an inability to leverage data to its full potential. The ramifications of this are not merely operational – they extend to the core of an organization's ability to thrive in the data-driven era. However, democratizing access to data is only the first hurdle in driving a data led organization, employees need to feel confident in their ability to use data, try new tools and adopt new processes. But who is best to show us the benefits of accessing and utilizing data currently, and the cultural benefits it can bring.  Lilac Schoenbeck is the Vice President of Strategic Initiatives at Rocket Software. Lilac has two decades of experience in enterprise software, data center technology and cloud, with wider experience in product marketing, pricing and packaging, corporate strategy, M&A integrations and product management. Lilac is passionate about delivering exceptional technology to IT teams that helps them drive value for their businesses.  In the episode, Richie and Lilac explore data democratization and the importance of having widespread data capabilities across an organization, common data problems that data democratization can solve, tooling to facilitate better access and use of data, tool and process adoption, confidence with data, good data culture, processes to encourage good data usage and much more.  Links mentioned in the show Rocket SoftwareWhat Does Democratizing Data Mean? Unlocking the Power of Data CulturesDemocratizing Data in Large Enterprises[Course] Introduction to Data Culture

#163 Upgrading Company Culture Using The Geek Way with Andrew McAfee, Principal Research Scientist at the MIT Sloan School of Management

2023-11-13 Listen
podcast_episode
Andrew McAfee (MIT Sloan School of Management) , Adel (DataFramed)

We are all guilty of getting excited about shiny new toys in whatever guise they present themselves to us. For many of us, lots of the recent shiny new toys have been ways of utilizing AI to update and iterate on the ways that we work. Leadership teams have been looking for ways that their organizations can incorporate AI solutions into their products, regardless of whether they might be the most valuable use of the company's time. A company that fails to incorporate new tools and technology will stagnate and fail altogether right? A failure to adapt to the new state of play will surely stop the company from becoming a high performer? Or will it? What sets apart high-performing organizations from their non high-performing counterparts? It’s not shiny new toys. It’s culture. Counter to conventional wisdom, the norms and beliefs of an organization, and not the technology and tools it uses, is what drives its performance. Andrew McAfee is a Principal Research Scientist at the MIT Sloan School of Management, co-founder and co-director of MIT’s Initiative on the Digital Economy, and the inaugural Visiting Fellow at the Technology and Society organization at Google. He studies how technological progress changes the world. His book, The Geek Way, reveals a new way to get big things done. His previous books include More from Less and, with Erik Brynjolfsson, The Second Machine Age. McAfee has written for publications including Foreign Affairs, Harvard Business Review, The Economist, The Wall Street Journal, and The New York Times. He's talked about his work on CNN and 60 Minutes, at the World Economic Forum, TED, and the Aspen Ideas Festival, with Tom Friedman and Fareed Zakaria, and in front of many international and domestic audiences. He’s also advised many of the world’s largest corporations and organizations ranging from the IMF to the Boston Red Sox to the US Intelligence Community. Throughout the episode, Adel and Andrew explore the four cultural norms of the Geek way, the evolutionary biological underpinnings of the traits high performing organizations exhibit, case studies in adapting organizational culture, the role of data in driving high performance teams, useful frameworks leaders can adopt to build high performing organizations, and a lot more. Link mentioned in the show: The Geek Way: The Radical Mindset That Drives Extraordinary Results by Andrew McAfeeThe Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies by Andrew McAfee and Erik BrynjolfssonThe Planning FallacyAnnie DukeSteven PinkerAdam Grant

#162 Scaling Data Engineering in Retail with Mohammad Sabah, SVP of Engineering & Data at Thrive Market

2023-11-06 Listen
podcast_episode
Mohammad Sabah (Thrive Market) , Richie (DataCamp)

Poor data engineering is like building a shaky foundation for a house—it leads to unreliable information, wasted time and money, and even legal problems, making everything less dependable and more troublesome in our digital world. In the retail industry specifically, data engineering is particularly important for managing and analyzing large volumes of sales, inventory, and customer data, enabling better demand forecasting, inventory optimization, and personalized customer experiences. It helps retailers make informed decisions, streamline operations, and remain competitive in a rapidly evolving market. Insight and frameworks learned from data engineering practices can be applied to a multitude of people and problems, and in turn, learning from someone who has been at the forefront of data engineering is invaluable.   Mohammad Sabah is SVP of Engineering and Data at Thrive Market, and was appointed to this role in 2018. He joined the company from The Honest Company where he served as VP of Engineering & Chief Data Scientist. Sabah joined The Honest Company following its acquisition of Insnap, which he co-founded in 2015. Over the course of his career, Sabah has held various data science and engineering roles at companies including Facebook, Workday, Netflix, and Yahoo! In the episode, Richie and Mo explore the importance of using AI to identify patterns and proactively address common errors, the use of tools like dbt and SODA for data pipeline abstraction and stakeholder involvement in data quality, data governance and data quality as foundations for strong data engineering, validation layers at each step of the data pipeline to ensure data quality, collaboration between data analysts and data engineers for holistic problem-solving and reusability of patterns, ownership mentality in data engineering and much more.  Links from the show: PagerDutyDomoOpsGeneCareer Track: Data Engineer

#161 Fighting for Algorithmic Justice with Dr. Joy Buolamwini, Artist-in-Chief and President of The Algorithmic Justice League

2023-10-30 Listen
podcast_episode
Joy Buolamwini (Algorithmic Justice League) , Richie (DataCamp)

In 2015 an MIT Researcher set out to build a mirror that would augment their face to look like those of their idols. The execution of this went well, until it came to testing. When the researcher came to use the mirror, no face was detected. The researcher was not detected in the mirror, until that is, she put on a white mask, at which point, the mirror worked as expected.  Three years later, a paper named ‘Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification’ was published by the same researcher. Its release started a wider conversation about bias within AI-based facial recognition systems, and about bias within AI in general. Work to fight against algorithmic bias, or ‘The Coded-Gaze’, has been ongoing since. But who spearheaded this work and highlighted these issues to the AI and tech community?  Dr. Joy Buolamwini is an AI researcher, artist, and advocate. In 2023, she is one of Time’s top 100 most influential people in AI. Joy founded the Algorithmic Justice League to create a world with more equitable and accountable technology. Her TED Featured Talk on algorithmic bias has over 1.5 million views and in 2020 Netflix released the documentary ‘Coded Bias’ following Joy’s research into the flaws of facial recognition systems. Her MIT thesis methodology uncovered large racial and gender bias in AI services from companies like Microsoft, IBM, and Amazon. Her research has been covered in over 40 countries, and as a renowned international speaker she has championed the need for algorithmic justice at the World Economic Forum and the United Nations. She serves on the Global Tech Panel convened by the vice president of European Commission to advise world leaders and technology executives on ways to reduce the harms of A.I. As a creative science communicator, she has written op-eds on the impact of artificial intelligence for publications like TIME Magazine and New York Times. Her spoken word visual audit "AI, Ain't I A Woman?" which shows AI failures on the faces of iconic women like Oprah Winfrey, Michelle Obama, and Serena Williams as well as the Coded Gaze short have been part of exhibitions ranging from the Museum of Fine Arts, Boston to the Barbican Centre, UK. A Rhodes Scholar and Fulbright Fellow, Joy has been named to notable lists including Bloomberg 50, Tech Review 35 under 35, , Forbes Top 50 Women in Tech (youngest), and Forbes 30 under 30. She holds two masters degrees from Oxford University and MIT; and a bachelor's degree in Computer Science from the Georgia Institute of Technology. Fortune Magazine named her to their 2019 list of world's greatest leaders describing her as "the conscience of the A.I. Revolution." In the episode, Richie and Joy discuss her journey into AI, the ethics of AI, the inception of Joy’s interest in AI bias, the Aspire Mirror and Gender Shades projects, The Algorithmic Justice League, consequences of biased facial recognition systems, highlights from Joy’s book (Unmasking AI), challenges in AI research such as misleading datasets and the importance of context, balancing working in AI and data while being an artist, and much more.  Links mentioned in the show: Unmasking AI by Joy BuolamwiniAlgorithmic Justice LeagueGender Shades ProjectThe Coded Gaze

#160 Adapting to the AI Era with Jason Feifer, Editor in Chief of Entrepreneur Magazine

2023-10-23 Listen
podcast_episode
Jason Feifer (Entrepreneur Magazine) , Adel (DataFramed)

I think it's safe to say that we are in the peak of the hype cycle with generative AI. Almost every week now, we see new startups with exciting new GenAI use-cases and products. However, exciting doesn't necessarily translate to useful. And now more than ever, it's important for leaders, whether at incumbents or startups, to adapt and drive value with generative AI and focus on useful use-cases. So how can they adapt well to these tectonic changes? Jason Feifer is the editor in chief of Entrepreneur magazine and host of the podcast Problem Solvers. Outside of Entrepreneur, he is the author of the book Build For Tomorrow, which helps readers find new opportunities in times of change, and co-hosts the podcast Help Wanted, where he helps solve listeners' work problems. He also writes a newsletter called One Thing Better, which each week gives you one better way to build a career or company you love. In the episode, Jason and Adel explore AI’s role in entrepreneurship, use cases and applications of AI, the effectiveness of certain AI tools, AI’s impact on established business models, frameworks for navigating change, advice for leaders and individuals on using AI in their work and much more.  Links Mentioned in the Show: Build for Tomorrow by Jason FeiferOne Thing Better NewsletterHeyGenBurger King Accepting Credit Cards in the 90s[COURSE] Implementing AI Solutions in Business

#159 Building Trustworthy AI with Beena Ammanath, Global Head of the Deloitte AI Institute

2023-10-16 Listen
podcast_episode
Beena Ammanath (Deloitte)

Throughout the past year, we've seen AI go from a nice-to-have, to a must-have in almost every large organization’s boardroom. There’s been more and more focus deploy AI  by leadership teams, and as a result, there's never been more pressure on the data team to deliver with AI. However, as the pressure to deliver with AI grows, the need to build safe and trustworthy experiences has also never been more important. But how do we balance between innovation and building these trustworthy experiences? How do you make responsible AI practical? Who should we get into the room when scoping safe AI use-cases?  Beena Ammanath is an award- winning senior technology executive with extensive experience in AI and digital transformation. Her career has spanned leadership roles in e-commerce, finance, marketing, telecom, retail, software products, service, and industrial domains. She is also the author of the ground breaking book, Trustworthy AI. Beena currently leads the Global Deloitte AI Institute and Trustworthy AI/ Ethical Technology at Deloitte. Prior to this, she was the CTO-AI at Hewlett Packard Enterprise. A champion for women and multicultural inclusion in technology and business, Beena founded Humans for AI, a 501c3b non-profit promoting diversity and inclusion in AI. Her work and contributions have been acknowledged with numerous awards and recognition such as 2016 Women Super Achiever Award from World Women’s Leadership Congress and induction into WITI’s 2017 Women in Technology Hall of Fame. Beena was honored by UC Berkeley as 2018 Woman of the Year for Business Analytics, by the San Francisco Business Times as one of the 2017 Most Influential Women in Bay Area and by the National Diversity Council as one of the Top 50 Multicultural Leaders in Tech. In the episode, Beena and Adel delve into the core principles of trustworthy AI, the interplay of ethics and AI in various industries, how to make trustworthy AI practical, who are the primary stakeholders for ensuring trustworthy AI, the importance of AI literacy when promoting responsible and trustworthy AI, and a lot more. Links mentioned in the Show Trustworthy AI by Beena AmmanathDeloitte AI InstituteHumans for AIData Literacy by Design, with Valerie Logan, CEO of the Data Lodge[Course] Implementing AI Solutions in Business[Webinar - October 19th 2023] Building a Capability Roadmap for AI

#158 Building Human-Centered AI Experiences with Haris Butt, Head of Product Design at ClickUp

2023-10-09 Listen
podcast_episode
Adel (DataFramed) , Haris Butt (ClickUp)

In today's AI landscape, organizations are actively exploring how to seamlessly embed AI into their products, systems, processes, and workflows. The success of ChatGPT stands as a testament to this. Its success is not solely due to the performance of the underlying model; a significant part of its appeal lies in its human-centered user experience, particularly its chat interface. Beyond the foundational skills, infrastructure, and tools, it's clear that great design is a crucial ingredient in building memorable AI experiences. How do you build human-centered AI experiences? What is the role of design in driving successful AI implementations? How can data leaders and practitioners adopt a design lens when building with AI? Here to answer these questions is Haris Butt, Head of Product Design at ClickUp. ClickUp is a project management tool that's been making a big bet on AI, and Haris plays a key role in shaping how AI is embedded within the platform. Throughout the episode, Adel & Haris spoke about the role of design in driving human-centered AI experiences, the iterative process of designing with large language models, how to design AI experiences that promote trust, how designing for AI differs from traditional software, whether good design will ultimately end up killing prompt engineering, and a lot more.

#157 Is AI an Existential Risk? With Trond Arne Undheim, Research Scholar in Global Systemic Risk at Stanford University

2023-10-02 Listen
podcast_episode
Trond Arne Undheim (Stanford University)

It's been almost a year since ChatGPT was released, mainstreaming AI into the collective consciousness in the process. Since that moment, we've seen a really spirited debate emerge within the data & AI communities, and really public discourse at large. The focal point of this debate is whether AI is or will lead to existential risk for the human species at large. We've seen thinkers such as Elizier Yudkowski, Yuval Noah Harari, and others sound the alarm bell on how AI is as dangerous, if not more dangerous than nuclear weapons. We've also seen AI researchers and business leaders sign petitions and lobby government for strict regulation on AI.  On the flip side, we've also seen luminaries within the field such as Andrew Ng and Yan Lecun, calling for, and not against, the proliferation of open-source AI. So how do we maneuver this debate, and where does the risk spectrum actually lie with AI? More importantly, how can we contextualize the risk of AI with other systemic risks humankind faces? Such as climate change, risk of nuclear war, and so on and so forth? How can we regulate AI without falling into the trap of regulatory capture—where a select and mighty few benefit from regulation, drowning out the competition in the meantime? Trond Arne Undheim is a Research scholar in Global Systemic Risk, Innovation, and Policy at Stanford University, Venture Partner at Antler, and CEO and co-founder of Yegii, an insight network with experts and knowledge assets on disruption. He is a nonresident Fellow at the Atlantic Council with a portfolio in artificial intelligence, future of work, data ethics, emerging technologies, and entrepreneurship. He is a former director of MIT Startup Exchange and has helped launch over 50 startups. In a previous life, he was an MIT Sloan School of Management Senior Lecturer, WPP Oracle Executive, and EU National Expert. In this episode, Trond and Adel explore the multifaceted risks associated with AI, the cascading risks lens and the debate over the likelihood of runaway AI. Trond shares the role of governments and organizations in shaping AI's future, the need for both global and regional regulatory frameworks, as well as the importance of educating decision-makers on AI's complexities. Trond also shares his opinion on the contrasting philosophies behind open and closed-source AI technologies, the risk of regulatory capture, and more.  Links mentioned in the show: Augmented Lean: A Human-Centric Framework for Managing Frontline Operations by Trond Arne Undheim & Natan LinderFuture Tech: How to Capture Value from Disruptive Industry Trends Trond Arne UndheimFuturized PodcastStanford Cascading Risk StudyCourse: AI Ethics

#156 Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision Scientist

2023-09-25 Listen
podcast_episode
Richie (DataCamp) , Cassie Kozyrkov (Google)

From the dawn of humanity, decisions, both big and small, have shaped our trajectory. Decisions have built civilizations, forged alliances, and even charted the course of our very evolution. And now, as data & AI become more widespread, the potential upside for better decision making is massive. Yet, like any technology, the true value of data & AI is realized by how we wield it.  We're often drawn to the allure of the latest tools and techniques, but it's crucial to remember that these tools are only as effective as the decisions we make with them. ChatGPT is only as good as the prompt you decide to feed it and what you decide to do with the output. A dashboard is only as good as the decisions that it influences. Even a data science team is only as effective as the value they deliver to the organization.  So in this vast landscape of data and AI, how can we master the art of better decision making? How can we bridge data & AI with better decision intelligence? ​​Cassie Kozyrkov founded the field of Decision Intelligence at Google where, until recently, she served as Chief Decision Scientist, advising leadership on decision process, AI strategy, and building data-driven organizations. Upon leaving Google, Cassie started her own company of which she is the CEO, Data Scientific. In almost 10 years at the company, Cassie personally trained over 20,000 Googlers in data-driven decision-making and AI and has helped over 500 projects implement decision intelligence best practices. Cassie also previously served in Google's Office of the CTO as Chief Data Scientist, and the rest of her 20 years of experience was split between consulting, data science, lecturing, and academia.  Cassie is a top keynote speaker and a beloved personality in the data leadership community, followed by over half a million tech professionals. If you've ever went on a reading spree about AI, statistics, or decision-making, chances are you've encountered her writing, which has reached millions of readers.  In the episode Cassie and Richie explore misconceptions around data science, stereotypes associated with being a data scientist, what the reality of working in data science is, advice for those starting their career in data science, and the challenges of being a data ‘jack-of-all-trades’.  Cassie also shares what decision-science and decision intelligence are, what questions to ask future employers in any data science interview, the importance of collaboration between decision-makers and domain experts, the differences between data science models and their real-world implementations, the pros and cons of generative AI in data science, and much more.  Links mentioned in the Show: Data scientist: The sexiest job of the 22nd centuryThe Netflix PrizeAI Products: Kitchen AnalogyType one, Two & Three Errors in StatisticsCourse: Data-Driven Decision Making for BusinessRadar: Data & AI Literacy...

#155 Building Diverse Data Teams with Tracy Daniels, Chief Data Officer at Truist

2023-09-18 Listen
podcast_episode
Tracy Daniels (Truist Financial Corporation)

In data science, the push for unbiased machine learning models is evident. So much effort is made into ensuring the products we create are done thoughtfully and correctly, but are we investing the same effort in ensuring our teams, the very architects of these models, are diverse and inclusive? Bias in data can lead to skewed results, and similarly, a lack of diversity in teams can result in narrow perspectives. As we prioritize building diversity and inclusion into our data, it's equally crucial to embed these principles within our teams. So, who is best equipped to guide us in integrating DEI from a data perspective? Tracy Daniels is the Chief Data Officer for Truist Financial Corporation. She leads the team responsible for Truist’s enterprise data capabilities, including strategy, governance, data platform delivery, client, master & reference data, and the centers of excellence for business intelligence visualization and artificial intelligence & machine learning. She is also the executive sponsor for Truist’s Enterprise Technology & Operations Diversity Council. Daniels joined Truist in 2018. She has more than 25 years of banking and technology experience leading high performing technology portfolio, development, infrastructure and global operations organizations. Tracy enjoys participating in civic and philanthropic endeavors including serving on the Georgia State University Foundation Board of Trustees. She has been recognized as a National 2013 WOC STEM Rising Star award recipient, the 2017 Working Mother magazine Mother of the Year recipient, and a 2021 Women In Technology (WIT) Women of the Year in STEAM finalist. In the episode Tracy and Richie discuss Truist's approach to Diversity, Equity, and Inclusion (DEI) and its alignment with the company's purpose and values, the distinction between diversity and inclusion, the positive outcomes of implementing DEI correctly, the importance of not missing opportunities both externally with customers and internally with talent, the significance of aligning diversity programs with business metrics and hiring to promote DEI, considerations for job advertisements that appeal to a diverse audience, and much more.  Links mentioned in the show: McKinsey on Diversity and InclusionBrookings Piece on Mitigating Bias in DataAlgorithmic Justice LeagueEuropean Legislation on Data and DiversityCourse: AI EthicsRadar: Data & AI Literacy Edition

#154 Building Ethical Machines with Reid Blackman, Founder & CEO at Virtue Consultants

2023-09-11 Listen
podcast_episode
Reid Blackman (Virtue)

It's been a year since ChatGPT burst onto the scene. It has given many of us a sense of the power and potential that LLMs hold in revolutionizing the global economy. But the power that generative AI brings also comes with inherent risks that need to be mitigated.  For those working in AI, the task at hand is monumental: to chart a safe and ethical course for the deployment and use of artificial intelligence. This isn't just a challenge; it's potentially one of the most important collective efforts of this decade. The stakes are high, involving not just technical and business considerations, but ethical and societal ones as well. How do we ensure that AI systems are designed responsibly? How do we mitigate risks such as bias, privacy violations, and the potential for misuse? How do we assemble the right multidisciplinary mindset and expertise for addressing AI safety?  Reid Blackman, Ph.D., is the author of “Ethical Machines” (Harvard Business Review Press), creator and host of the podcast “Ethical Machines,” and Founder and CEO of Virtue, a digital ethical risk consultancy. He is also an advisor to the Canadian government on their federal AI regulations, was a founding member of EY’s AI Advisory Board, and a Senior Advisor to the Deloitte AI Institute. His work, which includes advising and speaking to organizations including AWS, US Bank, the FBI, NASA, and the World Economic Forum, has been profiled by The Wall Street Journal, the BBC, and Forbes. His written work appears in The Harvard Business Review and The New York Times. Prior to founding Virtue, Reid was a professor of philosophy at Colgate University and UNC-Chapel Hill. In the episode, Reid and Richie discuss the dominant concerns in AI ethics, from biased AI and privacy violations to the challenges introduced by generative AI, such as manipulative agents and IP issues. They delve into the existential threats posed by AI, including shifts in the job market and disinformation. Reid also shares examples where unethical AI has led to AI projects being scrapped, the difficulty in mitigating bias, preemptive measures for ethical AI and much more.  Links mentioned in the show: Ethical Machines by Reid BlackmanVirtue Ethics ConsultancyAmazon’s Scrapped AI Recruiting ToolNIST AI Risk Management FrameworkCourse: AI EthicsDataCamp Radar: Data & AI Literacy

#153 From Data Literacy to AI Literacy with Cindi Howson, Chief Data Strategy Officer at ThoughtSpot

2023-09-04 Listen
podcast_episode
Adel (DataFramed) , Cindi Howson (ThoughtSpot)

For the past few years, we've seen the importance of data literacy and why organizations must invest in a data-driven culture, mindset, and skillset. However, as generative AI tools like ChatGPT have risen to prominence in the past year, AI literacy has never been more important. But how do we begin to approach AI literacy? Is it an extension of data literacy, a complement, or a new paradigm altogether? How should you get started on your AI literacy ambitions?  Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is a data analytics, AI, and BI thought leader and an expert with a flair for bridging business needs with technology. As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.

Cindi was previously a Gartner Research Vice President, the lead author for the data and analytics maturity model and analytics and BI Magic Quadrant, and a popular keynote speaker. She introduced new research in data and AI for good, NLP/BI Search, and augmented analytics, bringing both BI bake-offs and innovation panels to Gartner globally. She’s frequently quoted in MIT, Harvard Business Review, and Information Week. She is rated a top 12 influencer in big data and analytics by Analytics Insight, Onalytca, Solutions Review, and Humans of Data.

In the episode, Cindi and Adel discuss how generative AI accelerates an organization’s data literacy, how leaders can think beyond data literacy and start to think about AI literacy, the importance of responsible use of AI, how to best communicate the value of AI within your organization, what generative AI means for data teams, AI use-cases in the data space, the psychological barriers blocking AI adoption, and much more. 

Links Mentioned in the Show: The Data Chief Podcast  ThoughtSpot Sage  BloombergGPT  Radar: Data & AI Literacy Course: AI Ethics  Course: Generative AI Concepts Course: Implementing AI Solutions in Business 

Introducing Data & AI Literacy Month

2023-09-01 Listen
podcast_episode

With September and International Literacy Day (September 8th) upon us, we’re dedicating the entire month to cover the ins and outs of data & AI literacy. Make sure to sign up for the events we have in store, and to tune in for this month’s episodes. Data & AI Literacy MonthDataCamp Radar: Data & AI Literacy Edition

#152 How Data can Enable Effective Leadership with Dr. Constance Dierickx, The Decision Doctor

2023-08-28 Listen
podcast_episode
Constance Dierickx (CD Consulting Group) , Richie (DataCamp)

The mainstreaming of data & AI is fundamentally altering the way we work and operate. But with rising innovation, comes rising ambiguity and complexity. How can leaders effectively navigate the path ahead? How can leaders adopt data-driven decision-making and learn from their mistakes? How can leaders use data to look inward, and become what today’s guest describes as “meta-leaders”?  Constance Dierickx is an internationally recognized expert in high-stakes decision-making who has advised leaders and delivered speeches in more than 20 countries. Founder and president of CD Consulting Group, her clients include Fortune 20 companies, private equity firms, and large not-for-profits around the globe. She is a contributor to Harvard Business Review, Forbes, Chief Executive, and others, and has taught strategic decision-making at Skolkovo Institute of Science and Technology in Moscow, Russia.  In the episode, Richie and Constance delve into what meta-leadership is, the nuances of meta-leadership, the pivotal role of data in leadership, the importance of recognizing subtle behavioral cues, the implications of cognitive biases (particularly overconfidence), and the essence of wisdom in decision-making. Constance also shares insights from her clinical psychology background, highlighting the application of biofeedback mechanisms in managing chronic pain and much more.  Links From the Show: Meta-Leadership by Constance Dierickx High-Stakes Leadership by Constance Dierickx The Merger Mindset by Constance Dierickx Design the Life You Love: A Step-by-Step Guide to Building a Meaningful Future Book by Ayse Birsel Introducing The State of Data Literacy Report 2023 Data-Driven Decision Making for Business

#151 How Data Science Can Sustain Small Businesses with Kendra Vant, Executive GM Data & AI Products at Xero

2023-08-21 Listen
podcast_episode
Kendra Vant (Xero) , Richie (DataCamp)

Throughout history, small businesses have consistently played a pivotal role in the global economy, serving as its foundational backbone. As we navigate the digital age, the emergence of large corporations and rapid technological advancements present new challenges. Now, more than ever, it's imperative for small businesses to adapt, embracing a data-driven approach to remain competitive and sustainable. In this evolving landscape, we need champions dedicated to guiding these businesses, ensuring they harness the full potential of modern tools and insights to ensure a fair and varied marketplace of goods and services for all.  Dr Kendra Vant, Executive General Manager of Data & AI Products at Xero, is an industry leader in building data-driven products that harness AI and machine learning to solve complex problems for the small-business economy. Working across Australia, Asia and the US, Kendra has led data and technology teams at companies such as Seek, Telstra, Deloitte and now Xero where she leads the company's global efforts using emerging practices and technologies to help small businesses and their advisors benefit from the power of data and insights. Starting with doctoral research in experimental quantum physics at MIT and a stint building quantum computers at Los Alamos National Laboratory, Kendra has made a career of solving hard problems and pushing the boundaries of what's possible. In the episode, Kendra and Richie delve into the transformative impact of data science on small businesses, use-cases of data science for small businesses, how Xero has supported numerous small businesses with data science. They also cover the integration of AI in product development, the unexpected depth of data in seemingly low-tech sectors, the pivotal role of software platforms in data analysis and much more.  Links Mentioned in The Show: Xero Analyzing Business Data in SQL Financial Modeling in Spreadsheets Implementing AI Solutions in Business Generative AI Concepts

#150 Unlocking the Power of Data Science in the Cloud

2023-08-14 Listen
podcast_episode
Solongo Erdenekhuyag (Exasol) , John Knieriemen (Exasol) , Richie (DataCamp)

As companies scale and become more successful, new horizons open, but with them come unexpected challenges. The influx of revenue and expansion of operations often reveal hidden complexities that can hinder efficiency and inflate costs. In this tricky situation, data teams can find themselves entangled in a web of obstacles that slow down their ability to innovate and respond to ever-changing business needs. Enter cloud analytics—a transformative solution that promises to break down barriers and unleash potential. By migrating analytics to the cloud, organizations can navigate the growing pains of success, cutting costs, enhancing flexibility, and empowering data teams to work with agility and precision. John Knieriemen is the Regional Business Lead for North America at Exasol, the market-leading high-performance analytics database. Prior to joining Exasol, he served as Vice President and General Manager at Teradata during an 11-year tenure with the company. John is responsible for strategically scaling Exasol’s North America business presence across industries and expanding the organization’s partner network.  Solongo Erdenekhuyag is the former Customer Success and Data Strategy Leader at Exasol. Solongo is skilled in strategy, business development, program management, leadership, strategic partnerships, and management. In the episode, Richie, Solongo, and John cover the motivation for moving analytics to the cloud, economic triggers for migration, success stories from organizations who have migrated to the cloud, the challenges and potential roadblocks in migration, the importance of flexibility and open-mindedness and much more.  Links from the Show ExasolAmazon S3Azure Blob StorageGoogle Cloud StorageBigQueryAmazon RedshiftSnowflake[Course] Understanding Cloud Computing[Course] AWS Cloud Concepts

#149 Expanding the Scope of Generative AI in the Enterprise with Bal Heroor, CEO and Principal at Mactores

2023-08-07 Listen
podcast_episode
Bal Heroor (Mactores) , Richie (DataCamp)

Generative AI is here to stay—even in the 8 months since the public release of ChatGPT, there are an abundance of AI tools to help make us more productive at work and ease the stress of planning and execution of our daily lives among other things.  Already, many of us are wondering what is to come in the next 8 months, the next year, and the next decade of AI’s evolution. In the grand scheme of things, this really is just the beginning. But what should we expect in this Cambrian explosion of technology? What are the use cases being developed behind the scenes? What do we need to be mindful of when training the next generations of AI? Can we combine multiple LLMs to get better results? Bal Heroor is CEO and Principal at Mactores and has led over 150 business transformations driven by analytics and cutting-edge technology. His team at Mactores are researching and building AI, AR/VR, and Quantum computing solutions for business to gain a competitive advantage. Bal is also the Co-Founder of Aedeon—the first hyper-scale Marketplace for Data Analytics and AI talent. In the episode, Richie and Bal explore common use cases for generative AI, how it's evolving to solve enterprise problems, challenges of data governance and the importance of explainable AI, the challenges of tracking the lineage of AI and data in large organizations. Bal also touches on the shift from general-purpose generative AI models to more specialized models, fascinating use cases in the manufacturing industry, what to consider when adopting AI solutions in business, and much more. Links mentioned in the show: PulsarTrifactaAWS Clarify[Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business[Course] Generative AI Concepts

#148 Why AI is Eating the World with Daniel Jeffries, Managing Director at AI Infrastructure Alliance

2023-07-31 Listen
podcast_episode
Daniel Jeffries (AI Infrastructure Alliance) , Adel (DataFramed)

'Software is eating the world’ is a truism coined by Mark Andreesen, General Partner at Andreesen Horowitz. This was especially evident during the shift from analog mediums to digital at the turn of the century. Software companies have essentially usurped and replaced their non-digital predecessors. Amazon was the largest bookseller, Netflix was the largest movie "rental" service, Spotify or Apple were the largest music providers. Today, AI is starting to eat the world. However, we are still at the early start of the AI revolution, with AI set to become embedded in almost every piece of software we interact with. An AI ecosystem that touches every aspect of our lives is what today’s guest describes as ‘Ambient AI’. But what can we expect from this ramp up to Ambient AI? How will it change the way we work? What do we need to be mindful of as we develop this technology? Daniel Jeffries is the Managing Director of the AI Infrastructure Alliance and former CIO at Stability AI, the company responsible for Stable Diffusion, the popular open-source image generation model. He’s also an author, engineer, futurist, pro blogger and he’s given talks all over the world on AI and cryptographic platforms. In the episode, Adel and Daniel discuss how to define ambient AI, how our relationship with work will evolve as we become more reliant on AI, what the AI ecosystem is missing to rapidly scale adoption, why we need to accelerate the maturity of the open source AI ecosystem, how AI existential risk discourse takes away focus from real AI risk, and a lot lot more.

Links Mentioned in the Show Daniel’s Writing on MediumDaniel’s SubstackAI Infrastructure AllianceStability AIFrancois CholletRed Pajama DatasetRun AIWill Superintelligent AI End the World? By Eliezer Yudkowsky Nick Bostrom’s Paper Clip MaximizerThe pessimist archive [Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business

#147 The Past, Present & Future of Generative AI—With Joanne Chen, General Partner at Foundation Capital

2023-07-24 Listen
podcast_episode
Joanne Chen (Foundation Capital) , Richie (DataCamp)

In a time when AI is evolving at breakneck speeds, taking a step back and gaining a bird's-eye view of the evolving AI ecosystem is paramount to understanding where the field is headed. With this bird's-eye view come a series of questions. Which trends will dominate generative AI in the foreseeable future? What are the truly transformative use-cases that will reshape our business landscape? What does the skills economy look like in an age of hyper intelligence? Enter Joanne Chen, General Partner at Foundation Capital. Joanne invests in early-stage AI-first B2B applications and data platforms that are the building blocks of the automated enterprise. She has shared her learnings as a featured speaker at conferences, including CES, SXSW, WebSummit, and has spoken about the impact of AI on society in her TED talk titled "Confessions of an AI Investor." Joanne began her career as an engineer at Cisco Systems and later co-founded a mobile gaming company. She also spent many years working on Wall Street at Jefferies & Company, helping tech companies go through the IPO and M&A processes, and at Probitas Partners, advising venture firms on their fundraising process. Throughout the episode, Richie and Joanne cover emerging trends in generative AI, business use cases that have emerged in the past year since the advent of tools like ChatGPT, the role of AI in augmenting work, the ever-changing job market and AI's impact on it, as well as actionable insights for individuals and organizations wanting to adopt AI. Links mentioned in the show: JasperAIAnyScaleCerebras[Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business[Course] Generative AI Concepts

#146 Do Spreadsheets Need a Rethink? With Hjalmar Gislason, CEO of GRID

2023-07-17 Listen
podcast_episode
Hjalmar Gislason (GRID) , Richie (DataCamp)

Spreadsheets have been the unsung heroes of the data world for many decades now. Yet, despite their ubiquity and importance, they've seen little disruption or evolution. The grid of cells we interact with today isn't far removed from the ones our predecessors used in the 1980s. However, the winds of change have started to blow. As we stand on the cusp of a new era in data and AI, the humble spreadsheet is poised for transformation. The coming changes could redefine how we interact with data, derive insights, and how we make decisions. The implications are vast given the popularity and dependence we have on spreadsheets, and the potential impacts could ripple through every corner of the professional world.  Hjalmar Gislason is the founder and CEO of GRID, with their main product being a smart spreadsheet with an interactive data visualization layer and integrated AI assistance. Hjalmar previously served as VP of Product Management at Qlik. He was the founder and CEO of DataMarket, founded in 2008 and sold to Qlik in 2014. A career data nerd and entrepreneur, GRID is Hjalmar’s fifth software startup as a founder.  In the episode, Richie and Hjalmar explore the integral role of spreadsheets in today's data-driven world, the limitations of traditional Business Intelligence tools, and the transformative potential of generative AI in the realm of spreadsheets.