talk-data.com talk-data.com

Event

DataFramed

2019-04-01 – 2025-12-01 Podcasts Visit website ↗

Activities tracked

300

Welcome to DataFramed, a weekly podcast exploring how artificial intelligence and data are changing the world around us. On this show, we invite data & AI leaders at the forefront of the data revolution to share their insights and experiences into how they lead the charge in this era of AI. Whether you're a beginner looking to gain insights into a career in data & AI, a practitioner needing to stay up-to-date on the latest tools and trends, or a leader looking to transform how your organization uses data & AI, there's something here for everyone.

Join co-hosts Adel Nehme and Richie Cotton as they delve into the stories and ideas that are shaping the future of data. Subscribe to the show and tune in to the latest episode on the feed below.

Sessions & talks

Showing 201–225 of 300 · Newest first

Search within this event →

#145 Why AI will Change Everything—with Former Snowflake CEO, Bob Muglia

2023-07-10 Listen
podcast_episode
Bob Muglia (Snowflake; Microsoft) , Richie (DataCamp)

Data and AI are advancing at an unprecedented rate—and while the jury is still out on achieving superintelligent AI systems, the idea of artificial intelligence that can understand and learn anything—an “artificial general intelligence”—is becoming more likely. What does the rise of AI mean for the future of software and work as we know it? How will AI help reinvent most of the ways we interact with the digital and physical world? Bob Muglia is a data technology investor and business executive, former CEO of Snowflake, and past president of Microsoft's Server and Tools Division. As a leader in data & AI, Bob focuses on how innovation and ethical values can merge to shape the data economy's future in the era of AI. He serves as a board director for emerging companies that seek to maximize the power of data to help solve some of the world's most challenging problems. In the episode, Richie and Bob explore the current era of AI and what it means for the future of software. Throughout the episode, they discuss how to approach driving value with large language models, the main challenges organizations face when deploying AI systems, the risks, and rewards of fine-tuning LLMs for specific use cases, what the next 12 to 18 months hold for the burgeoning AI ecosystem, the likelihood of superintelligence within our lifetimes, and more. Links from the show: The Datapreneurs by Bob Muglia and Steve HammThe Singularity is Near by Ray KurzweilIsaac AsimovSnowflakePineconeDocugamiOpenAI/GPT-4The Modern Data Stack

#144 Intel CTO Steve Orrin on How Governments Can Navigate the Data & AI Revolution

2023-07-03 Listen
podcast_episode
Steve Orrin (Intel)

Today's government agencies face unprecedented complexities, and when thinking about the role of government in driving positive change for society at large, data & AI stand out as key levers to empower government agencies to do more with less. However, the road to government data & AI transformation is fraught with risk, and is full with opportunity. So how can government data leaders succeed in their transformation endeavors?  Steve Orrin is Intel’s Federal Chief Technology Officer. He leads Public Sector Solution Architecture, Strategy, and Technology Engagements and has held technology leadership positions at Intel where he has led cybersecurity programs, products, and strategy. Steve was previously CSO for Sarvega, CTO of Sanctum, CTO and co-founder of LockStar, and CTO at SynData Technologies. He was named one of InfoWorld's Top 25 CTO's, received Executive Mosaic’s Top CTO Executives Award, is a Washington Exec Top Chief Technology Officers to Watch in 2023, was the Vice-Chair of the NSITC/IDESG Security Committee and was a Guest Researcher at NIST’s National Cybersecurity Center of Excellence (NCCoE). He is a fellow at the Center for Advanced Defense Studies and the chair of the INSA Cyber Committee. Throughout the episode, we talked about the unique challenges government face when driving value with data & AI, how agencies need to align their data ambitions with their actual mission, the nuances between data privacy laws between the united states, Europe, and China, how to best approach launching pilot projects if you are in government, and a lot more.

#143 Fighting the Climate Crisis with Data

2023-06-26 Listen
podcast_episode

Every year we become increasingly aware of the urgency of the climate crisis, and with that, the need to usher in renewable energies and scale their adoption has never been more important. However, as we look at the ways to scale the adoption of renewable energy, data stands out as a key lever to accelerate a greener future.  Today’s guest is Jean-Pierre Pélicier, CDO at ENGIE. ENGIE is one of the largest energy producers in the world and definitely one of the largest in Europe. They operate in more than 48 countries and have committed to becoming carbon neutral by 2045. Data plays a crucial part in these plans. In the episode, Jean-Pierre shares his unique perspective on how data is not just transforming the renewable energy industry but also redefining the way we approach the climate crisis. From harnessing the power of data to optimize energy production and distribution to leveraging advanced analytics to predict and mitigate environmental impacts, Jean-Pierre highlights the ways data continues to be an invaluable tool in our quest for a sustainable future. Also discussed in the episode are the challenges of data collection and quality in the energy sector, the importance of fostering a data culture within an organization, and aligning data strategy with a company's strategic objectives.

#142 Is Data Science Still the Sexiest Job of the 21st Century?

2023-06-19 Listen
podcast_episode
Thomas Davenport (Babson College)

About 10 years ago, Thomas Davenport & DJ Patil published the article "Data Scientist: The Sexiest Job of the 21st Century" in the Harvard Business Review. In this piece, they described the bourgeoning role of the data scientist and what it will mean for organizations and individuals in the coming decade. As time has passed, data science has become increasingly institutionalized. Once seen as a luxury, it is now deemed a necessity in every modern boardroom. Moreover as technologies like AI and systems like ChatGPT keep astonishing us with their capabilities in handling data science tasks, it raises a pertinent question: Is Data Science Still the Sexiest Job of the 21st Century? In this episode, we invited Thomas Davenport on the show to share his perspective on where data science & AI are at today, and where they are headed. Thomas Davenport is the President’s Distinguished Professor of Information Technology and Management at Babson College, the co-founder of the International Institute for Analytics, a Fellow of the MIT Initiative for the Digital Economy, and a Senior Advisor to Deloitte Analytics. He has written or edited twenty books and over 250 print or digital articles for Harvard Business Review (HBR), Sloan Management Review, the Financial Times, and many other publications. One of HBR’s most frequently published authors, Thomas has been at the forefront of the Process Innovation, Knowledge Management, and Analytics and Big Data movements. He pioneered the concept of “competing on analytics” with his 2006 Harvard Business Review article and his 2007 book by the same name. Since then, he has continued to provide cutting-edge insights on how companies can use analytics and big data to their advantage, and then on artificial intelligence. Throughout the episode, we discuss how data science has changed since he first published his article, how it has become more institutionalized, how data leaders can drive value with data science, the importance of data culture, his views on AI and where he thinks its going, and a lot more. Links from the Show: Working with AI by Thomas Davenport The AI Advantage: How to Put the Artificial Intelligence Revolution to Work by Thomas Davenport Harvard Business Review New Vantage Partners CCC Intelligent Solutions Radar AI

#141 How Data Science is Transforming the NBA

2023-06-12 Listen
podcast_episode
Seth Partnow (StatsBomb) , Richie (DataCamp)

Historically in elite team sports, there has often been a dynamic between players and their inherent abilities, and the vision of the coach. In many sports, we’ve seen coaching strategies influence the future of how the game is played. As the era of professionalism swept across many elite sports in the 90s, we saw the highest-level sports teams achieve a competitive edge by looking at the data, with sports fans often noticing a difference in the ‘feel’ of the way their team plays. In Basketball specifically, we have recently seen the rise of the 3-pointer, a riskier and much more difficult shot to accurately hit, even for professional players. But what has driven the rise of the 3-pointer? Is it another trend among coaches, or does the answer lie with data-based insights and the analysts producing these insights? Seth Partnow is the Director of North American Sports at StatsBomb, where he previously served as their Director of Basketball Analytics. Prior to joining StatsBomb in 2021, Seth was the Director of Basketball Research for the Milwaukee Bucks basketball team. Seth is also an accomplished Analyst and Author, having worked as an NBA Analyst for The Athletic since 2019 and having published his own book on basketball analytics, The Midrange Theory. Seth’s knowledge and insight bridges the gap between data analytics and elite US sport.  In the episode, Seth and Richie look into the intricate dynamics of elite basketball. Seth explores the challenges of attributing individual contributions in a sport where the outcome is significantly influenced by the complex interplay between players. Drawing from his extensive experience in the field, Seth discusses the complexities of analyzing player performance, the nuances of determining why certain players get easier or harder shots, and the difficulty of attributing credit for defensive achievements to individual players. Seth provides a comprehensive overview of the various roles within sports analytics, from data engineers to analysts, and highlights the importance of finding one's niche within these roles, particularly in the context of elite basketball. Seth also shares his personal journey into basketball analytics, offering valuable insights and advice for those interested in pursuing a career in this field, stressing the importance of introspection and understanding the unique lifestyle associated with working for a sports team, while also offering industry-agnostic advice on how to approach analyzing and using data in any context.

#140 How this Accenture CDO is Navigating the AI Revolution

2023-06-05 Listen
podcast_episode
Tracy Ring (Accenture)

In the realm of Applied Intelligence, Accenture leads the way in harnessing the power of data and AI to transform industries. From consumer products to life sciences, retail, and aerospace, Accenture's influence is far-reaching. But what drives the organization? How does it navigate the complex landscape of data modernization and transformation? And more importantly, how does it leverage technology not just as an enabler, but as a catalyst for innovation?  Tracy Ring leads Accenture’s Applied Intelligence Products Category Group, in this role she has leadership across Consumer and Industrial Products, Automotive, Life Sciences, Retail and Aerospace and Defense. As the CDO and Global Generative AI lead for Life Sciences, she personally anchors the NA Applied Intelligence Life Sciences practice of more than 500 practitioners. Tracy has created solutions for Generative AI, Data led transformation, Artificial Intelligence, Data and Cloud Modernization, Analytics, and the organization and operating model strategies for next-generation adoption and AI fluency.  In the episode, Tracy initially clarifies the difference between data modernization and data transformation, highlighting their distinct meanings and why the terms aren’t interchangeable.  Tracy also emphasizes the importance of involving business end-users from the outset of data projects as well as advocating for a product-oriented approach to data. The discussion also covers the topic of team diversity and inclusivity. Tracy shares practical advice on how to build diverse teams and create an environment that encourages curiosity and open dialogue. Tracy also shares her perspective on the future of work and the importance of fostering meaningful conversations in the workplace. She advocates for an attitude of infinite curiosity within teams. In the context of life sciences, Tracy highlights the high stakes involved and underscores the need for responsible AI, data sharing, and data privacy. She also points out that the challenges in this field are more similar than dissimilar to those in other industries. Tune in for a wealth of insights from a seasoned leader in the field of Applied Intelligence.

#139 How Data Scientists Can Thrive in the FMCG Industry

2023-05-29 Listen
podcast_episode

A lot of the times when we walk into a supermarket, we don't necessarily think about the impact data science had in getting these products on shelves. However, as you’ll learn in today's episode, it's safe to say there's a myriad of applications for data science in the FMCG industry. Whether be that supply chain use-cases that leverage time-series forecasting techniques, to computer vision use-cases for on-shelf optimization—the use-cases are endless here. So how can data scientists and data leaders maximize value in this space? Enter Anastasia Zygmantovich. Anastasia is a Global Data Science Director at Reckitt, which is most known for products like Airwick, Lysol, Detol, and Durex. Throughout the episode, we discuss how data science can be used in the FMCG industry, how data leaders can hire impactful data teams in this space, why FMCG is a great place to work in for data scientists, some awesome use-cases she's worked on, how data scientists can best maximize their value in this space, what generative AI means for organizations, and a lot more.

#138 Data Science & AI in the Gaming Industry

2023-05-22 Listen
podcast_episode
Marie de Léséleuc (Ubisoft; Warner Brothers; Eidos)

When we think about video games like Call of Duty, Fifa, or Fortnite, our minds often turn to creative artists, software developers, designers, and producers. These are the people who make our favorite games a reality. But behind the scenes, data & AI actively shape our experience with our favorite video games. From the quality of video games, the accessibility of maps and worlds, even the go to market, data & AI play an impactul role in making or breaking the success of a video game. Marie de Léséleuc is an accomplished game industry professional with over a decade of experience. Marie started her career as a data analyst, and has since risen through the ranks to a data leader in the gaming industry. She's worked at companies such as Ubisoft, Warner Brothers, and most recently at Eidos, the company most well known for games such as Guardians of the Galaxy and Tomb Raider. Throughout the episode, we discuss how data science can be used in gaming, the unique challenges data teams face in gaming from really low data volumes to massive changes to production schedules and game vision. We also spoke about the difference between "AI" as we know it in data science, and AI in gaming, which informs how NPCs behave in a video game world—and a lot more.

#137 Navigating Parenthood with Data

2023-05-15 Listen
podcast_episode
Emily Oster (Brown University)

Imagine making parenting choices not just based on instinct and through the lived experiences of others, but instead using data-driven techniques garnered through a career in data and economics.  Emily Fair Oster is a Professor of Economics and International and Public Affairs at Brown University. Her work is unique, blending economics, health, and research in new ways. In her books "Expecting Better," "The Family Firm," and "Cribsheet," she's shown how data can help guide us through pregnancy and parenting. In the episode, Emily shows how she used her knowledge of data and economics when she was pregnant, and how this way of thinking can change how we make decisions. We look at the tension between what we feel and what the data tells us when we're making parenting choices, and why many of us lean on personal experiences. Emily tells us why it's important to use quality data when making decisions and how to make sense of all the information out there. Emily talks about the ins and outs of using data to make parenting decisions, discussing the big milestones in a child's life, the role of sleep, and how these can impact a person's future as well as the nuance in applying data-driven decision-making to your parenting.  Emily also touches on how having two working parents and traditional gender roles can shape how we parent. Finally, Emily gives some helpful tips on finding and understanding good-quality data. This will help you make better decisions as a parent. Tune in for a thought-provoking look at parenting, data, and economics.

[DataFramed AI Series #4] Building AI Products with ChatGPT

2023-05-11 Listen
podcast_episode
Joaquin Marques (Kanayma LLC)

Although many have been cognizant of AI’s value in recent months, the further back we look, the more exclusive this group of people becomes. In our latest AI-series episodes of DataFramed, we gain insight from an expert who has been part of the industry for 40 years. Joaquin Marques, Founder and Principal Data Scientist at Kanayma LLC has been working in AI since 1983. With experience at major tech companies like IBM, Verizon, and Oracle, Joaquin's knowledge of AI is vast. Today, he leads an AI consultancy, Kanayma, where he creates innovative AI products. Throughout the episode, Joaquin shares his insights on AI's development over the years, its current state, and future possibilities. Joaquin also shares the exciting projects they've worked on at Kanayma as well as what to consider when building AI products, and how ChatGPT is making chatbots better. Joaquin goes beyond providing insight into the space, encouraging listeners to think about the practical consequences of implementing AI, with Joaquin sharing the finer technical details of many of the solutions he’s helped build. Joaquin also shares many of the thought processes that have helped him move forward when building AI products, providing context on many practical applications of AI, both from his past and the bleeding edge of today.   The discussion examines the complexities of artificial intelligence, from the perspective of someone that has been focused on this technology for more than most. Tune in for guidance on how to build AI into your own company's products.

[DataFramed AI Series #3] GPT and Generative AI for Data Teams

2023-05-10 Listen
podcast_episode
Sarah Schlobohm (Kubrick Group)

With the advances in AI products and the explosion of ChatGPT in recent months, it is becoming easier to imagine a world where AI and humans work seamlessly together—revolutionizing how we solve complex problems and transform our daily lives. This is especially the case for data professionals. In this episode of our AI series, we speak to Sarah Schlobohm, Head of AI at Kubrick Group. Dr. Schlobohm leads the training of the next generation of machine learning engineers. With a background in finance and consulting, Sarah has a deep understanding of the intersection between business strategy, data science, and AI. Prior to her work in finance, Sarah became a chartered accountant, where she honed her skills in financial analysis and strategy. Sarah worked for one of the world's largest banks, where she used data science to fight financial crime, making significant contributions to the industry's efforts to combat money laundering and other illicit activities. Sarah shares her extensive knowledge on incorporating AI within data teams for maximum impact, covering a wide array of AI-related topics, including upskilling, productivity, and communication, to help data professionals understand how to integrate generative AI effectively in their daily work. Throughout the episode, Sarah explores the challenges and risks of AI integration, touching on the balance between privacy and utility. She highlights the risks data teams can avoid when using AI products and how to approach using AI products the right way. She also covers how different roles within a data team might make use of generative AI, as well as how it might effect coding ability going forward. Sarah also shares use cases for those in non-data teams, such as marketing, while also highlighting what to consider when using outputs from GPT models. Sarah shares the impact chatbots might have on education calling attention to the power of AI tutors in schools. Sarah encourages people to start using AI now, considering the barrier to entry is so low, and how that might not be the case going forward. From automating mundane tasks to enabling human-AI collaboration that makes work more enjoyable, Sarah underscores the transformative power of AI in shaping the future of humanity. Whether you're an AI enthusiast, data professional, or someoone with an interest in either this episode will provide you with a deeper understanding of the practical aspects of AI implementation.

[DataFramed AI Series #2] How Organizations can Leverage ChatGPT

2023-05-09 Listen
podcast_episode
Noelle Silver Russell (Accenture)

With the advent of any new technology that promises to make humans lives easier, replacing concious actions with automation, there is always backlash. People are often aware of the displacement of jobs, and often, it is viewed in a negative light. But how do we try to change the collective understanding to one of hope and excitement? What use cases can be shared that will change the opinion of those that are weary of AI?  Noelle Silver Russell is the Global AI Solutions & Generative AI & LLM Industry Lead at Accenture, responsible for enterprise-scale industry playbooks for generative AI and LLMs. In this episode of our AI series, Noelle discusses how to prioritize ChatGPT use cases by focusing on the different aspects of value creation that GPT models can bring to individuals and organizations. She addresses common misconceptions surrounding ChatGPT and AI in general, emphasizing the importance of understanding their potential benefits and selecting use cases that maximize positive impact, foster innovation, and contribute to job creation. Noelle draws parallels between the fast-moving AI projects today and the launch of Amazon Alexa, which she worked on, and points out that many of the discussions being raised today were also talked about 10 years ago. She discusses how companies can now use AI to focus both on business efficiencies and customer experience, no longer having to settle for a trade-off between the two. Noelle explains the best way for companies to approach adding GPT tools into their processes, which focusses on taking a holistic view to implementation. She also recommends use-cases for companies that are just beginning to use AI, as well as the challenges they might face when deploying models into production, and how they can mitigate them.  On the topic of the displacement of jobs, Noelle draws parallels from when Alexa was launched, and how it faced similar criticisms, digging into the fear that people have around new technology, which could be transformed into enthusiasm. Noelle suggests that there is a burden on leadership within organizations to create a culture where people are excited to use AI tools, rather than feeling threatened by them.

[DataFramed AI Series #1] ChatGPT and the OpenAI Developer Ecosystem

2023-05-08 Listen
podcast_episode
Logan Kilpatrick (OpenAI)

ChatGPT has leaped into the forefront of our lives—everyone from students to multinational organizations are seeing value in adding a chat interface to an LLM. But OpenAI has been concentrating on this for years, steadily developing one of the most viral digital products this century. In this episode of our AI series, we sit down with Logan Kilpatrick. Logan currently leads developer relations at OpenAI, supporting developers building with DALL-E, the OpenAI API, and ChatGPT. Logan takes us through OpenAI’s products, API, and models, and provides insights into the many use cases of ChatGPT.  Logan provides fascinating information on ChatGPT’s plugins and how they can be used to build agents that help us in a variety of contexts. He also discusses the future integration of LLMs into our daily lives and how it will add structure to the unstructured nature and difficult-to-leverage data we generate and interact with on a daily basis. Logan also touches on the powerful image input features in GPT4, how it can help those with partial sight to improve their quality of life, and how it can be used for various other use cases. Throughout the episode, we unpack the need for collaboration and innovation, due to ChatGPT becoming more powerful when integrated with other pieces of software. Covering key discussion points with regard to AI tools currently, in particular, what could be built in-house by OpenAI and what could be built in the public domain. Logan also discusses the ecosystem forming around ChatGPT and how it will all become connected going forward. Finally, Logan shares tips for getting better responses from ChatGPT and the things to consider when integrating it into your organization’s product.  This episode provides a deep dive into the world of GPT models from within the eye of the storm, providing valuable insights to those interested in AI and its practical applications in our daily lives.

Introducing the DataFramed AI Series

2023-05-05 Listen
podcast_episode

From May 8-11, discover expert insights from four industry leaders from OpenAI, Accenture, Kubrick Group, and Kanayma LLC on how to navigate the era of AI.

#136 Scaling the Data Culture at Salesforce

2023-05-01 Listen
podcast_episode
Laura Gent Felker (Salesforce)

Ten years ago, Salesforce was trying to generate $1Bn of revenue in a quarter. Today, they create over $30Bn of revenue in year. Simultaneously, over the last decade we have seen huge advances in the world of data and data science. In this episode, Laura Gent Felker, Director of Data Insights and Scalability at Salesforce, talks about her experience in building and leading data teams within the organization over the last ten years. Laura shares her insights on how to create a learning culture within a team, how to prioritize projects while accounting for long-term strategy, and the importance of setting aside time for innovation. Laura also discusses how to ensure that the projects the team works on genuinely provide business value. She suggests creating a two-way street with executive leadership and understanding the collective value across a variety of stakeholders also citing that some of the best innovation she has seen come from her team is when they have had to solve high-priority short-term business problems. 

In addition, Laura shares a multi-layered approach to building a learning community within a data team. She explains that a culture of collaboration and trust is important in the direct data team, and the wider community within organizations. 

Laura also talks about the frameworks and mental models that can help develop business acumen. She highlights the importance of dedicating time to this area and being able to communicate insights effectively.

Throughout the episode, Laura's insights provide valuable guidance for both junior and experienced data professionals, consumers and leaders in creating a learning culture, prioritizing projects, and building a strong data community within organizations.

#135 Building the Case for Data Literacy

2023-04-24 Listen
podcast_episode
Valerie Logan (The Data Lodge)

Data literacy is becoming increasingly recognized as a valuable skill in today's workforce. We all interact with data on a daily basis, and organizations are now realizing the tremendous benefits of having a workforce that is well-versed in data, from interacting with dashboards to data analysis and data science. But, it all starts with data literacy.  In this episode, we speak with Valerie Logan, CEO and Founder of The Data Lodge. Valerie is committed to data literacy, she believes that in today's digital society, data literacy is a life skill. With advisory services, bootcamps, a resource library and community services at The Data Lodge, Valerie is certifying the world’s first Data Literacy Program Leads and pioneering the path forward in cracking the data culture code. Valerie is also known for helping popularize the term "Data Literacy." In this episode, she shares insights on what a successful data literacy journey looks like, best practices for evangelizing data literacy programs, how to avoid siloed efforts between departments and much more. Valerie sheds light on the difficulties organizations face when trying to prioritize data literacy and data culture. She suggests that this is because humans are still at the center of organizations, and changing their behaviour is a challenge. She also talks about what data literacy means, and how the definition adapts to use cases.  Valerie offers guidance on how to secure executive buy-in for data upskilling programs, explaining that finding a sponsor for the program is the first step. She also talks about the importance of extending buy-in to people who are less directly involved with data and upskilling, emphasizing how the program will help strategic objectives.

Valerie also provides insights on the hallmarks of an effective pilot program for data literacy, suggesting that organizations go where there's already interest and that a good pilot is one where before and after effects can be measured. She also shares tips on how organizations can ensure that their data literacy program helps them achieve their strategic business goals.

Throughout the episode, Valerie outlines the benefit and scope data literacy can have on an organization, with one of the most pertinent pieces of wisdom being a warning to organisations that risk ignoring upskilling and investing in data.

Links mentioned in the show: RADAR 2023: Building an Enterprise Data Strategy that Puts People FirstThe Data LodgeThe State of Data Literacy in 2023What is Data Maturity and Why Does it Matter?

#134 Building Great Machine Learning Products at Opendoor

2023-04-17 Listen
podcast_episode
Sam Stone (Opendoor)

Building machine learning systems with high predictive accuracy is inherently hard, and embedding these systems into great product experiences is doubly so. To build truly great machine learning products that reach millions of users, organizations need to marry great data science expertise, with strong attention to user experience, design thinking, and a deep consideration for the impacts of your prediction on users and stakeholders. So how do you do that? Today’s guest is Sam Stone, Director of Product Management, Pricing & Data at Opendoor, a real-estate technology company that leverages machine learning to streamline the home buying and selling process. Sam played an integral part in developing AI/ML products related to home pricing including the Opendoor Valuation Model (OVM), market liquidity forecasting, portfolio optimization, and resale decision tooling. Prior to Opendoor, he was a co-founder and product manager at Ansaro, a SaaS startup using data science and machine learning to help companies improve hiring decisions. Sam holds degrees in Math and International Relations from Stanford and an MBA from Harvard. Throughout the episode, we spoke about his principles for great ML product design, how to think about data collection for these types of products, how to package outputs from a model within a slick user interface, what interpretability means in the eyes of customers, how to be proactive about monitoring failure points, and much more.

#133 Building a Safer Internet with Data Science

2023-04-10 Listen
podcast_episode
Richard Davis (Ofcom)

Ofcom is the government-approved regulatory and competition authority for the broadcasting, telecommunications and postal industries of the United Kingdom. It plays a vital role in ensuring TV, radio and telecoms work as they should. With vast swathes of information from a wide range of sources, data plays a huge role in the way Ofcom operates - in this episode, we learn the key drivers of Ofcom’s data strategy.  Richard Davis is the Chief Data Officer at Ofcom, responsible for enabling data and analytics capabilities across the organisation. Prior to Ofcom, Richard worked as a Quantitative Analyst as well as being the former Head of Analytics and Innovation at LLoyds Bank, proving he has a wealth of experience across a variety of data roles.  After joining Ofcom in 2022, Richard describes his experience of joining Ofcom, his ambition to bring in new processes, and how he leverages the community of data professionals. Richard also shares his advice for a new data leader, which includes understanding the pain points of the team, making insights more efficient, and keeping data teams aligned with the business's needs. He also elaborates on the key components of the data strategy at Ofcom, including aligning to good data, good people, and good decisions.

Also discussed is the importance of cultural change in an organization and how to upskill data experts and train non-data specialists in data literacy, the difference between technical experts and people managers, and how organizations can enable people to grow to become technical leaders. Finally, Richard emphasizes the importance of evidence-based regulation, and how data literacy supports effective output. Richard provides excellent insight into the world of regulatory data, the challenges faced by Ofcom, and the solutions they can implement to overcome them.

#132 The Past, Present, and Future, of the Data Science Notebook

2023-04-03 Listen
podcast_episode
Dr. Jodie Burchell (JetBrains)

The concept of literate programming, or the idea of programming in a document, was first introduced in 1984 by Donald Knuth. And as of today, notebooks are now the defacto tool for doing data science work. So as the data tooling space continues to evolve at breakneck speed, what are the possible directions the data science notebook can take?  In this episode of DataFramed, we talk with Dr. Jodie Burchell, Data Science Developer Advocate at JetBrains, to find out how data science notebooks evolved into what they are today, what her predictions are for the future of notebooks and data science, and how generative AI will impact data teams going forward.  Jodie completed a Ph.D. in clinical psychology and a postdoc in biostatistics before transitioning into data science. She has since worked for 7 years as a data scientist, developing products ranging from recommendation systems to audience profiling. She is also a prolific content creator in the data science community. Throughout the episode, Jodie discusses the evolution of data science notebooks over the last few years, noting how the move to remote-based notebooks has allowed for the seamless development of more complex models straight from the notebook environment. Jodie and Adel’s conversation also covers tooling challenges that have led to modern IDEs and notebooks, with Jodie highlighting the importance of good database tooling and visibility. She shares how data science notebooks have evolved to help democratize data for the wider organization, the tradeoffs between engineering-led approaches to tooling compared to data science approaches, what generative AI means for the data profession, her predictions for data science, and more. Tune in to this episode to learn more about the evolution of data science notebooks and the challenges and opportunities facing the data science community today. Links to mentioned in the show: DataCamp Workspace: An-in Browser Notebook IDEJetBrains' DataloreNick Cave on ChatGPT song lyrics imitating his styleGitHub Copilot  More on the topic: The Past, Present, And Future of The Data Science NotebookHow to Use Jupyter Notebooks: The Ultimate Guide

[Radar Recap] Unleashing the Power of Data Teams in 2023

2023-03-30 Listen
podcast_episode
Vijay Yadav (Center for Mathematical Sciences at Merck) , Vanessa Gonzalez (Transamerica)

In 2023, businesses are relying more heavily on data science and analytics teams than ever before. However, simply having a team of talented individuals is not enough to guarantee success.  In the last of our RADAR 2023 sessions, Vijay Yadav and Vanessa Gonzalez will outline the keys to building high-impact data teams in 2023. They will discuss what are the hallmarks of a high-performing data team, the importance of diversity of background and skillset needed to build impactful data teams, setting up career pathways for data scientists, and more. Vijay Yadav is a highly respected data and analytics thought leader with over 20 years of experience in data product development, data engineering, and advanced analytics. As Director of Quantitative Sciences - Digital, Data, and Analytics at Merck, he leads data & analytics teams in creating AI/ML-driven data products to drive digital transformation. Vijay has held numerous leadership positions at various companies and is known for his ability to lead global teams to achieve high-impact results.  Vanessa Gonzalez is the Sr. Director of Data Science and Innovation at Businessolver where she leads the Computational Linguistics, Machine Learning Engineering, Data Science, BI Analytics, and BI Engineering teams. She is experienced in leading data transformations, performing analytical and management functions that contribute to the goals and growth objectives of organizations and divisions.  Listen in as Vanessa and Vijay share how to enable data teams to flourish in an ever-evolving data landscape. 

[Radar Recap] Building an Enterprise Data Strategy that Puts People First

2023-03-29 Listen
podcast_episode
Valerie Logan (The Data Lodge) , Cindi Howson (ThoughtSpot)

An effective data strategy is one that combines a variety of levers such as infrastructure, tools, organization, processes, and more. Arguably however, the most important aspect of a vibrant data strategy is culture and people. In the third of our four RADAR 2023 sessions, Cindi Howson and Valerie Logan discuss how data leaders can create a data strategy that puts their people at the center. Learn key insights into how to drive effective change management for data culture, how to drive adoption of data within the organization, common pitfalls when executing on a data strategy, and more.  Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is an analytics and BI thought leader and expert with a flair for bridging business needs with technology.  As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.  Valerie Logan is the Founder and CEO of The Data Lodge. Valerie is committed to data literacy, she believes that in today's digital society, data literacy is a life skill. With advisory services, bootcamps, a resource library and community services at The Data Lodge, Valerie is certifying the world’s first Data Literacy Program Leads and pioneering the path forward in cracking the data culture code. In 2018, she was awarded Gartner’s Top Thought Leadership Award for her leadership in the area of Data Literacy. Listen in as Cindi and Valerie share how to build a data strategy that puts people first in an enterprise organization.

[Radar Recap] Navigating the Future with Data Literacy: How Organizations Can Thrive in 2023 & Beyond

2023-03-28 Listen
podcast_episode
Jordan Morrow (Brainstorm, Inc.)

As organizations and the economy at large look to weather the challenges of 2023, data literacy is one of the keys to empowering organizations to navigate the decade's most significant challenges with confidence.  In the second of our four RADAR 2023 sessions, Jordan Morrow shares how to navigate the future with data literacy, and how organizations can thrive as data becomes ever more prominent. Jordan is known as the "Godfather of Data Literacy", having helped pioneer the field by building one of the world's first data literacy programs and driving thought leadership on the subject. Jordan is Vice President and Head of Data And Analytics at BrainStorm, Inc., and a global trailblazer in the world of data literacy, building the world's first full scale data literacy program. He served as the Chair of the Advisory Board for The Data Literacy Project, has spoken at numerous conferences around the world and is an active voice in the data and analytics community. He has also helped companies and organizations around the world, including the United Nations, build and understand data literacy. Listen in as Jordan outlines how and why data literacy can help build individual and organizational resilience, how to scale data literacy within your organization, and more.

[Radar Recap] Value Creation with the Modern Data Stack

2023-03-27 Listen
podcast_episode
Yali Sassoon (Snowplow Analytics) , Barr Moses (Monte Carlo)

As organizations of all sizes continuously look to drive value out of data, the modern data stack has emerged as a clear solution for getting insights into the hands of the organization. With the rapid pace of innovation not slowing down, the tools within the modern data stack have enabled data teams to drive faster insights, collaborate at scale, and democratize data knowledge. However, are tools just enough to drive business value with data?  In the first of our four RADAR 2023 sessions, we look at the key drivers of value within the modern data stack through the minds of Yali Sassoon and Barr Moses.  Yali Sassoon is the Co-Founder and Chief Strategy Officer at Snowplow Analytics, a behavioral data platform that empowers data teams to solve complex data challenges. At Snowplow, Yali gets to combine his love of building things with his fascination of the ways in which people use data to reason. Barr Moses is CEO & Co-Founder of Monte Carlo. Previously, she was VP Customer Operations at customer success company Gainsight, where she helped scale the company 10x in revenue and, among other functions, built the data/analytics team.  Listen in as Yali and Barr outline how data leaders can drive value creation with data in 2023.

#131 How the Aviation Industry Leverages Data Science

2023-03-20 Listen
podcast_episode
Derek Cedillo (GE Aerospace)

Data leaders play a critical role in driving innovation and growth in various industries, and this is particularly true in highly regulated industries such as aviation. In such industries, data leaders face unique challenges and opportunities, working to balance the need for innovation with strict regulatory requirements. This week’s guest is Derek Cedillo, who has 27 years of experience working in Data and Analytics at GE Aerospace. Derek currently works as a Senior Manager for GE Aerospace’s Remote Monitoring and Diagnostics division, having previously worked as the Senior Director for Data Science and Analytics. In the episode, Derek shares the key components to successfully managing a Data Science program within a large and highly regulated organization. He also shares his insights on how to standardize data science planning across various projects and how to get a Data Scientists to think and work in an agile manner. We hear about ideal data team structures, how to approach hiring, and what skills to look for in new hires.  The conversation also touches on what responsibility Data Leaders have within organizations, championing data-driven decisions and strategy, as well as the complexity Data Leaders face in highly regulated industries. When it comes to solving problems that provide value for the business, engagement and transparency are key aspects. Derek shares how to ensure that expectations are met through clear and frank conversations with executives that try to align expectations between management and Data Science teams. 

Finally, you'll learn about validation frameworks, best practices for teams in less regulated industries, what trends to look out for in 2023 and how ChatGPT is changing how executives define their expectations from Data Science teams. 

Links to mentioned in the show: The Checklist Manifesto by Atul Gawande Team of Teams by General Stanley McChrystal The Harvard Data Science Review Podcast

Relevant Links from DataCamp: Article: Storytelling for More Impactful Data Science Course: Data Communication Concepts Course: Data-Driven Decision-Making for Business

#130 The Path to Becoming a Kaggle Grandmaster

2023-03-13 Listen
podcast_episode
Richie (DataCamp) , Jean-Francois Puget (NVIDIA)

Oftentimes, Kaggle competitions are looked at as an excellent way for data scientists to sharpen their machine learning skills and become technically excellent. This begs the question, what are the hallmarks of high-performing Kaggle competitors? What makes a Kaggle Grand Master? Today’s guest, Jean-Francois Puget PhD, distinguished engineer at NVIDIA, has achieved this impressive feat three times.  Throughout the episode, Richie and Jean-Francois discuss his background and how he became a Kaggle Grandmaster. He shares his scientific approach to machine learning and how he uses this to consistently achieve high results in Kaggle competitions. Jean-Francois also discusses how NVIDIA employs nine Kaggle Grandmasters and how they use Kaggle experiments to breed innovation in solving their machine learning challenges. He expands on the toolkit he employs in solving Kaggle competitions, and how he has achieved 50X improvements in efficiencies using tools like RAPIDS.  Richie and Jean-Francois also delve into the difference between competitive data science on Kaggle and machine learning work in a real-world setting. They deep dive into the challenges of real-world machine learning, and how to resolve the ambiguities of using machine learning in production that data scientists don’t encounter in Kaggle competitions.