talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (40 results)

See all 40 →
Showing 12 results

Activities & events

Title & Speakers Event
dlthub 2025-09-16 · 19:50
Adrian Brudaru – COO and Founder @ dlthub
Bruin 2025-09-16 · 19:35
Burak Karakan – CEO @ Bruin
Keeboola 2025-09-16 · 19:20
Pavel Chocholous – Senior Product Marketing Engineer @ Keboola
Manil Manohar – Head of Data and Analytics @ Ratepay
LLM

In this podcast episode, we talked with Adrian Brudaru about ​the past, present and future of data engineering.

About the speaker: Adrian Brudaru studied economics in Romania but soon got bored with how creative the industry was, and chose to go instead for the more factual side. He ended up in Berlin at the age of 25 and started a role as a business analyst. At the age of 30, he had enough of startups and decided to join a corporation, but quickly found out that it did not provide the challenge he wanted. As going back to startups was not a desirable option either, he decided to postpone his decision by taking freelance work and has never looked back since. Five years later, he co-founded a company in the data space to try new things. This company is also looking to release open source tools to help democratize data engineering.

0:00 Introduction to DataTalks.Club 1:05 Discussing trends in data engineering with Adrian 2:03 Adrian's background and journey into data engineering 5:04 Growth and updates on Adrian's company, DLT Hub 9:05 Challenges and specialization in data engineering today 13:00 Opportunities for data engineers entering the field 15:00 The "Modern Data Stack" and its evolution 17:25 Emerging trends: AI integration and Iceberg technology 27:40 DuckDB and the emergence of portable, cost-effective data stacks 32:14 The rise and impact of dbt in data engineering 34:08 Alternatives to dbt: SQLMesh and others 35:25 Workflow orchestration tools: Airflow, Dagster, Prefect, and GitHub Actions 37:20 Audience questions: Career focus in data roles and AI engineering overlaps 39:00 The role of semantics in data and AI workflows 41:11 Focusing on learning concepts over tools when entering the field 45:15 Transitioning from backend to data engineering: challenges and opportunities 47:48 Current state of the data engineering job market in Europe and beyond 49:05 Introduction to Apache Iceberg, Delta, and Hudi file formats 50:40 Suitability of these formats for batch and streaming workloads 52:29 Tools for streaming: Kafka, SQS, and related trends 58:07 Building AI agents and enabling intelligent data applications 59:09Closing discussion on the place of tools like DBT in the ecosystem

🔗 CONNECT WITH ADRIAN BRUDARU Linkedin -  / data-team   Website - https://adrian.brudaru.com/ 🔗 CONNECT WITH DataTalksClub Join the community - https://datatalks.club/slack.html Subscribe to our Google calendar to have all our events in your calendar - https://calendar.google.com/calendar/... Check other upcoming events - https://lu.ma/dtc-events LinkedIn -  /datatalks-club   Twitter -  /datatalksclub   Website - https://datatalks.club/

AI/ML Airflow Dagster Data Engineering dbt Delta DuckDB GitHub HTML Hudi Iceberg Kafka Modern Data Stack Prefect SQLMesh Data Streaming
DataTalks.Club
Trends in Data Engineering 2025-01-22 · 11:30

The past, present and future of data engineering - Adrian Brudaru

Outline:

1. Updates on Adrian: From Freelancer to Founder 2. Trends: Iceberg\, dbt\, duckdb 3. Spark in 2025 – yes or no? 4. The future of data engineering

About the speaker:

Adrian Brudaru studied economics in Romania but soon got bored with how creative the industry was, and chose to go instead for the more factual side. I ended up in Berlin at the age of 25 and started a role as a business analyst. At the age of 30, I had enough of startups and decided to join a corporation, but quickly found out that it did not provide the challenge I wanted.

As going back to startups was not a desirable option either, I decided to postpone my decision by taking freelance work. I have since never looked back, and now, 5 years later, I am co-founding a company in the data space so I can try new things. This company is also looking to release a bunch of open-source tooling (the kind we use ourselves) to help democratize data engineering.

Join our slack: https://datatalks.club/slack.html

Trends in Data Engineering
Adrian Brudaru – guest , Marcin Rudolf – cofounder @ DLT Hub , Tobias Macey – host

Summary In this episode of the Data Engineering Podcast, Adrian Broderieux and Marcin Rudolph, co-founders of DLT Hub, delve into the principles guiding DLT's development, emphasizing its role as a library rather than a platform, and its integration with lakehouse architectures and AI application frameworks. The episode explores the impact of the Python ecosystem's growth on DLT, highlighting integrations with high-performance libraries and the benefits of Arrow and DuckDB. The episode concludes with a discussion on the future of DLT, including plans for a portable data lake and the importance of interoperability in data management tools. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementImagine catching data issues before they snowball into bigger problems. That’s what Datafold’s new Monitors do. With automatic monitoring for cross-database data diffs, schema changes, key metrics, and custom data tests, you can catch discrepancies and anomalies in real time, right at the source. Whether it’s maintaining data integrity or preventing costly mistakes, Datafold Monitors give you the visibility and control you need to keep your entire data stack running smoothly. Want to stop issues before they hit production? Learn more at dataengineeringpodcast.com/datafold today!Your host is Tobias Macey and today I'm interviewing Adrian Brudaru and Marcin Rudolf, cofounders at dltHub, about the growth of dlt and the numerous ways that you can use it to address the complexities of data integrationInterview IntroductionHow did you get involved in the area of data management?Can you describe what dlt is and how it has evolved since we last spoke (September 2023)?What are the core principles that guide your work on dlt and dlthub?You have taken a very opinionated stance against managed extract/load services. What are the shortcomings of those platforms, and when would you argue in their favor?The landscape of data movement has undergone some interesting changes over the past year. Most notably, the growth of PyAirbyte and the rapid shifts around the needs of generative AI stacks (vector stores, unstructured data processing, etc.). How has that informed your product development and positioning?The Python ecosystem, and in particular data-oriented Python, has also undergone substantial evolution. What are the developments in the libraries and frameworks that you have been able to benefit from?What are some of the notable investments that you have made in the developer experience for building dlt pipelines?How have the interfaces for source/destination development improved?You recently published a post about the idea of a portable data lake. What are the missing pieces that would make that possible, and what are the developments/technologies that put that idea within reach?What is your strategy for building a sustainable product on top of dlt?How does that strategy help to form a "virtuous cycle" of improving the open source foundation?What are the most interesting, innovative, or unexpected ways that you have seen dlt used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on dlt?When is dlt the wrong choice?What do you have planned for the future of dlt/dlthub?Contact Info AdrianLinkedInMarcinLinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links dltPodcast EpisodePyArrowPolarsIbisDuckDBPodcast Episodedlt Data ContractsRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodePyAirbyteOpenAI o1 ModelLanceDBQDrant EmbeddedAirflowGitHub ActionsArrow DataFusionApache ArrowPyIcebergDelta-RSSCD2 == Slowly Changing DimensionsSQLAlchemySQLGlotFSSpecPydanticSpacyEntity RecognitionParquet File FormatPython DecoratorREST API ToolkitOpenAPI Connector GeneratorConnectorXPython no-GILDelta LakePodcast EpisodeSQLMeshPodcast EpisodeHamiltonTabularPostHogPodcast.init EpisodeAsyncIOCursor.AIData MeshPodcast EpisodeFastAPILangChainGraphRAGAI Engineering Podcast EpisodeProperty GraphPython uvThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

AI/ML API Arrow Data Engineering Data Lake Data Lakehouse Data Management Datafold DuckDB GenAI Python
Data Engineering Podcast

Data ingestion with dlt - Adrian Brudaru

About the event

In this hands-on workshop, we’ll learn how to build data ingestion pipelines.

We’ll cover the following steps:

  • Extracting data from APIs, or files.
  • Normalizing and loading data
  • Incremental loading

By the end of this workshop, you’ll be able to write data pipelines like a senior data engineer: Quickly, concisely, scalable, and self-maintaining.

About the speaker:

Adrian is the co-founder of dlthub, who created the dlt library. Before starting dlthub, he worked for 10 years as a data engineer building data warehouses and teams. ​DataTalks.Club is the place to talk about data. Join our slack community!

This event is sponsored by dltHub

Data Ingestion From APIs to Warehouses

We talked about:

Adrian’s background The benefits of freelancing Having an agency vs freelancing What let Adrian switch over from freelancing The conception of DLT (Growth Full Stack) The investment required to start a company Growth through the provision of services Growth through teaching (product-market fit) Moving on to creating docs Adrian’s current role Strategic partnerships and community growth through DocDB Plans for the future of DLT DLT vs Airbyte vs Fivetran Adrian’s resource recommendations

Links:

Adrian's LinkedIn: https://www.linkedin.com/in/data-team/ Twitter: https://twitter.com/dlt_library Github: https://github.com/dlt-hub/dlt Website: https://dlthub.com/docs/intro

Free ML Engineering course: http://mlzoomcamp.com Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

AI/ML Airbyte Fivetran GitHub HTML
DataTalks.Club

Building an open core data tooling company - Adrian Brudaru

About the event

Outline:

  • Update on Adrian’s journey and why he quit freelancing
  • Founding an open-source data company
  • Product market fit and why you need it
  • Company and the future

About the speaker

Adrian started working in the data field back in 2012, for Berlin startups. After 5 years, he joined a corporation and quickly found out corporate life was not for him. He went on to freelance for the next 5 years, a time in which he coached multiple professionals who wanted to follow the same path. Now, Adrian has stopped freelancing and is working on an open-source library for data people.

DataTalks.Club is the place to talk about data. Join our slack community!

The Entrepreneurship Journey: From Freelancing to Starting a Company
Adrian Brudaru – guest , Tobias Macey – host

Summary

Cloud data warehouses and the introduction of the ELT paradigm has led to the creation of multiple options for flexible data integration, with a roughly equal distribution of commercial and open source options. The challenge is that most of those options are complex to operate and exist in their own silo. The dlt project was created to eliminate overhead and bring data integration into your full control as a library component of your overall data system. In this episode Adrian Brudaru explains how it works, the benefits that it provides over other data integration solutions, and how you can start building pipelines today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack You shouldn't have to throw away the database to build with fast-changing data. You should be able to keep the familiarity of SQL and the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date. With Materialize, you can! It’s the only true SQL streaming database built from the ground up to meet the needs of modern data products. Whether it’s real-time dashboarding and analytics, personalization and segmentation or automation and alerting, Materialize gives you the ability to work with fresh, correct, and scalable results — all in a familiar SQL interface. Go to dataengineeringpodcast.com/materialize today to get 2 weeks free! This episode is brought to you by Datafold – a testing automation platform for data engineers that finds data quality issues before the code and data are deployed to production. Datafold leverages data-diffing to compare production and development environments and column-level lineage to show you the exact impact of every code change on data, metrics, and BI tools, keeping your team productive and stakeholders happy. Datafold integrates with dbt, the modern data stack, and seamlessly plugs in your data CI for team-wide and automated testing. If you are migrating to a modern data stack, Datafold can also help you automate data and code validation to speed up the migration. Learn more about Datafold by visiting dataengineeringpodcast.com/datafold Your host is Tobias Macey and today I'm interviewing Adrian Brudaru about dlt, an open source python library for data loading

Interview

Introduction How did you get involved in the area of data management? Can you describe what dlt is and the story behind it?

What is the problem you want to solve with dlt? Who is the target audience?

The obvious comparison is with systems like Singer/Meltano/Airbyte in the open source space, or Fivetran/Matillion/etc. in the commercial space. What are the complexities or limitations of those tools that leave an opening for dlt? Can you describe how dlt is implemented? What are the benefits of building it in Python? How have the design and goals of the project changed since you first started working on it? How does that language choice influence the performance and scaling characteristics? What problems do users solve with dlt? What are the interfaces available for extending/customizing/integrating with dlt? Can you talk through the process of adding a new source/destination? What is the workflow for someone building a pipeline with dlt? How does the experience scale when supporting multiple connections? Given the limited scope of extract and load, and the composable design of dlt it seems like a purpose built companion to dbt (down to th

Airbyte Analytics BI CI/CD Cloud Computing Data Engineering Data Management Data Quality Datafold dbt ETL/ELT Fivetran Matillion Modern Data Stack Meltano Python SaaS Singer SQL Data Streaming
Data Engineering Podcast

We talked about:

Adrian’s background Freelancing vs Employment Risk and occupancy rate in freelancing The scariest part of freelancing Adrian’s first projects Freelancing 5 years later Pay rates in freelancing Acquiring skills while freelancing Working with recruitment agencies and networking Looking for projects and getting clients Freelancing vs consulting Clarity in clients’ expectations (scope of work) Building your network Freelancing platforms Adrian’s data loading prototype Going from freelancing to making your own product (and other investments) The usefulness of a portfolio Introverts in freelancing Is it possible to work for 3 months a year in freelancing? Choosing projects and skill-building strategy (focusing on interests) Freelancing in Berlin Clients’ expectations for freelancers vs employees Working with more than one client at the same time Adrian’s freelance cooperative on Slack Other advice for novice freelancers (networking) Finding Adrian online

Links:

Github: https://github.com/scale-vector Slack Community: https://join.slack.com/t/berlindatacol-szn7050/shared_invite/zt-19dp8msp0-pP4Av3_fVFBbsdrzPROEAg

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Engineering GitHub HTML MLOps
DataTalks.Club
Showing 12 results