talk-data.com talk-data.com

Topic

Analytics

data_analysis insights metrics

4552

tagged

Activity Trend

398 peak/qtr
2020-Q1 2026-Q1

Activities

4552 activities · Newest first

Let’s measure the entire customer lifecycle. Start understanding your clients from the moment they see your displays in retail stores, enter your brick-and-mortar locations, and engage your business both online and offline. Discuss identification, reporting, and responsible analytics.

Predicting product's demand based on user's different action & restructure the merchandise & pricing based on it.Measure different action which occurs between users & product (i.e. add to cart,prod view, etc) & build a mapping to identify high value product for large group of user.

talk
by Peter O'Neill (L3Analytics, UK)

A practical run through on specific methods to get value from your digital analytics data every day. Not strategic diagnosis work or performance reporting but daily tactical uses of analytics data that directly leads to actions. The session will cover the required tracking, how to convert the data into insights and how these insights can be used to immediately make changes.

When Avinash Kaushik tells your senior management they have a huge opportunity, his advice comes from extensive research into your industry, your company and your competition. Unilever took him at his word and set out to transform how they approached digital. A key component of the program was establishing new standards for collaborating and standardazing to provide transparency and drive optimization.

Sam Briesemeister, Director of Technology Services for Analytics Pros will lead a full-day workshop on how to use Google's new Universal Analytics and Measurement Protocol in multiple environments from front-end websites to back-end systems and even integrated hardware kits like the Raspberry Pi. Attendees should expect to setup an actual Universal Analytics integration in a test environment.

Analytics is similar to being an artist working on a canvas rather than a scientist in a lab. Integrated use of Tableau will be incorporated into this session as it is great for making data usable through visual analytics. Learn how you can bring out your inner artist to find new meaning in data and to create powerful insights that drive valuable business outcomes.

Ask, Measure, Learn

You can measure practically anything in the age of social media, but if you don’t know what you’re looking for, collecting mountains of data won’t yield a grain of insight. This non-technical guide shows you how to extract significant business value from big data with Ask-Measure-Learn, a system that helps you ask the right questions, measure the right data, and then learn from the results. Authors Lutz Finger and Soumitra Dutta originally devised this system to help governments and NGOs sift through volumes of data. With this book, these two experts provide business managers and analysts with a high-level overview of the Ask-Measure-Learn system, and demonstrate specific ways to apply social media analytics to marketing, sales, public relations, and customer management, using examples and case studies.

Commercial Data Mining

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience

Forecasting Offertory Revenue at St. Elizabeth Seton Catholic Church

This new business analytics case study challenges readers to forecast donations, plan budgets, and manage cash flow for a religious institution suffering rapidly falling contributions. Crystallizing realistic analytical challenges faced by non-profit and for-profit organizations of all kinds, it exposes readers to the entire decision-making process, providing opportunities to perform analyses, interpret output, and recommend the best course of action. Author: Matthew J. Drake, Duquesne University.

Forecasting Sales at Ska Brewing Company

This new business analytics case study challenges readers to project trends and plan capacity for a fast-growing craft beer operation, so it can make the best possible decisions about expensive investments in brewing capacity. Crystallizing realistic analytical challenges faced by companies in many industries and markets, it exposes readers to the entire decision-making process, providing opportunities to perform analyses, interpret output, and recommend the best course of action. Author: Eric Huggins, Fort Lewis College.

Leveraging DB2 10 for High Performance of Your Data Warehouse

Building on the business intelligence (BI) framework and capabilities that are outlined in InfoSphere Warehouse: A Robust Infrastructure for Business Intelligence, SG24-7813, this IBM® Redbooks® publication focuses on the new business insight challenges that have arisen in the last few years and the new technologies in IBM DB2® 10 for Linux, UNIX, and Windows that provide powerful analytic capabilities to meet those challenges. This book is organized in to two parts. The first part provides an overview of data warehouse infrastructure and DB2 Warehouse, and outlines the planning and design process for building your data warehouse. The second part covers the major technologies that are available in DB2 10 for Linux, UNIX, and Windows. We focus on functions that help you get the most value and performance from your data warehouse. These technologies include database partitioning, intrapartition parallelism, compression, multidimensional clustering, range (table) partitioning, data movement utilities, database monitoring interfaces, infrastructures for high availability, DB2 workload management, data mining, and relational OLAP capabilities. A chapter on BLU Acceleration gives you all of the details about this exciting DB2 10.5 innovation that simplifies and speeds up reporting and analytics. Easy to set up and self-optimizing, BLU Acceleration eliminates the need for indexes, aggregates, or time-consuming database tuning to achieve top performance and storage efficiency. No SQL or schema changes are required to take advantage of this breakthrough technology. This book is primarily intended for use by IBM employees, IBM clients, and IBM Business Partners.