talk-data.com talk-data.com

Topic

data-science-tasks

849

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

849 activities · Newest first

Recursive Identification and Parameter Estimation

Recursive Identification and Parameter Estimation describes a recursive approach to solving system identification and parameter estimation problems arising from diverse areas. Supplying rigorous theoretical analysis, it presents the material and proposed algorithms in a manner that makes it easy to understand—providing readers with the modeling and identification skills required for successful theoretical research and effective application. The book begins by introducing the basic concepts of probability theory, including martingales, martingale difference sequences, Markov chains, mixing processes, and stationary processes. Next, it discusses the root-seeking problem for functions, starting with the classic RM algorithm, but with attention mainly paid to the stochastic approximation algorithms with expanding truncations (SAAWET) which serves as the basic tool for recursively solving the problems addressed in the book. The book not only identifies the results of system identification and parameter estimation, but also demonstrates how to apply the proposed approaches for addressing problems in a range of areas, including: Identification of ARMAX systems without imposing restrictive conditions Identification of typical nonlinear systems Optimal adaptive tracking Consensus of multi-agents systems Principal component analysis Distributed randomized PageRank computation This book recursively identifies autoregressive and moving average with exogenous input (ARMAX) and discusses the identification of non-linear systems. It concludes by addressing the problems arising from different areas that are solved by SAAWET. Demonstrating how to apply the proposed approaches to solve problems across a range of areas, the book is suitable for students, researchers, and engineers working in systems and control, signal processing, communication, and mathematical statistics.

The Mystery of Market Movements: An Archetypal Approach to Investment Forecasting and Modelling

A quantifiable framework for unlocking the unconscious forces that shape markets There has long been a notion that subliminal forces play a great part in causing the seemingly irrational financial bubbles, which conventional economic theory, again and again, fails to explain. However, these forces, sometimes labeled 'animal spirits' or 'irrational exuberance, have remained elusive - until now. The Mystery of Market Movements provides you with a methodology to timely predict and profit from changes in human investment behaviour based on the workings of the collective unconscious. Niklas Hageback draws in on one of psychology's most influential ideas - archetypes - to explain how they form investor's perceptions and can be predicted and turned into profit. The Mystery of Market Movements provides; A review of the collective unconscious and its archetypes based on Carl Jung's theories and empirical case studies that highlights and assesses the influences of the collective unconscious on financial bubbles and zeitgeists For the first time being able to objectively measure the impact of archetypal forces on human thoughts and behaviour with a view to provide early warning signals on major turns in the markets. This is done through a step-by-step guide on how to develop a measurement methodology based on an analysis of the language of the unconscious; figurative speech such as metaphors and symbolism, drawn out and deciphered from Big Data sources, allowing for quantification into time series The book is supplemented with an online resource that presents continuously updated bespoken archetypal indexes with predictive capabilities to major financial indexes Investors are often unaware of the real reasons behind their own financial decisions. This book explains why psychological drivers in the collective unconscious dictates not only investment behaviour but also political, cultural and social trends. Understanding these forces allows you to stay ahead of the curve and profit from market tendencies that more traditional methods completely overlook.

Bayesian Networks

Understand the Foundations of Bayesian Networks—Core Properties and Definitions Explained Bayesian Networks: With Examples in R introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples in R illustrate each step of the modeling process. The examples start from the simplest notions and gradually increase in complexity. The authors also distinguish the probabilistic models from their estimation with data sets. The first three chapters explain the whole process of Bayesian network modeling, from structure learning to parameter learning to inference. These chapters cover discrete Bayesian, Gaussian Bayesian, and hybrid networks, including arbitrary random variables. The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R and other software packages appropriate for Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein signaling network paper and graphical modeling approaches for predicting the composition of different body parts. Suitable for graduate students and non-statisticians, this text provides an introductory overview of Bayesian networks. It gives readers a clear, practical understanding of the general approach and steps involved.

Communicating Data with Tableau

Go beyond spreadsheets and tables and design a data presentation that really makes an impact. This practical guide shows you how to use Tableau Software to convert raw data into compelling data visualizations that provide insight or allow viewers to explore the data for themselves. Ideal for analysts, engineers, marketers, journalists, and researchers, this book describes the principles of communicating data and takes you on an in-depth tour of common visualization methods. You’ll learn how to craft articulate and creative data visualizations with Tableau Desktop 8.1 and Tableau Public 8.1. Present comparisons of how much and how many Use blended data sources to create ratios and rates Create charts to depict proportions and percentages Visualize measures of mean, median, and mode Lean how to deal with variation and uncertainty Communicate multiple quantities in the same view Show how quantities and events change over time Use maps to communicate positional data Build dashboards to combine several visualizations

Fundamentals of Applied Probability and Random Processes, 2nd Edition

The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings Expands readers’ understanding of disruptive statistics in a new chapter (chapter 8) Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).

Methods and Applications of Statistics in Clinical Trials, Volume 2: Planning, Analysis, and Inferential Methods

Methods and Applications of Statistics in Clinical Trials, Volume 2: Planning, Analysis, and Inferential Methods includes updates of established literature from the Wiley Encyclopedia of Clinical Trials as well as original material based on the latest developments in clinical trials. Prepared by a leading expert, the second volume includes numerous contributions from current prominent experts in the field of medical research. In addition, the volume features: Multiple new articles exploring emerging topics, such as evaluation methods with threshold, empirical likelihood methods, nonparametric ROC analysis, over- and under-dispersed models, and multi-armed bandit problems Up-to-date research on the Cox proportional hazard model, frailty models, trial reports, intrarater reliability, conditional power, and the kappa index Key qualitative issues including cost-effectiveness analysis, publication bias, and regulatory issues, which are crucial to the planning and data management of clinical trials

Introduction to Imprecise Probabilities

In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, including theory and applications reflecting the current state if the art. Each chapter is written by experts on the respective topics, including: Sets of desirable gambles; Coherent lower (conditional) previsions; Special cases and links to literature; Decision making; Graphical models; Classification; Reliability and risk assessment; Statistical inference; Structural judgments; Aspects of implementation (including elicitation and computation); Models in finance; Game-theoretic probability; Stochastic processes (including Markov chains); Engineering applications. Essential reading for researchers in academia, research institutes and other organizations, as well as practitioners engaged in areas such as risk analysis and engineering.

Statistical Applications for Environmental Analysis and Risk Assessment

Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and "ready-made" software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners Software scripts using the high-powered statistical software system, R, and supplemented by USEPA's ProUCL and USDOE's VSP software packages, which are all freely available Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.

Nonparametric Statistics: A Step-by-Step Approach, 2nd Edition

"...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." -CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.

A Practical Guide to Data Mining for Business and Industry

Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics

An accessible treatment of Monte Carlo methods, techniques, and applications in the field of finance and economics Providing readers with an in-depth and comprehensive guide, the Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics presents a timely account of the applicationsof Monte Carlo methods in financial engineering and economics. Written by an international leading expert in thefield, the handbook illustrates the challenges confronting present-day financial practitioners and provides various applicationsof Monte Carlo techniques to answer these issues. The book is organized into five parts: introduction andmotivation; input analysis, modeling, and estimation; random variate and sample path generation; output analysisand variance reduction; and applications ranging from option pricing and risk management to optimization. The Handbook in Monte Carlo Simulation features: An introductory section for basic material on stochastic modeling and estimation aimed at readers who may need a summary or review of the essentials Carefully crafted examples in order to spot potential pitfalls and drawbacks of each approach An accessible treatment of advanced topics such as low-discrepancy sequences, stochastic optimization, dynamic programming, risk measures, and Markov chain Monte Carlo methods Numerous pieces of R code used to illustrate fundamental ideas in concrete terms and encourage experimentation The Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics is a complete reference for practitioners in the fields of finance, business, applied statistics, econometrics, and engineering, as well as a supplement for MBA and graduate-level courses on Monte Carlo methods and simulation.

Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification

A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes: Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction An extensive introduction to neural networks that begins with regression models and builds to more complex frameworks Coverage of both the variable selection algorithm and the model selection algorithm for wavelet networks in addition to methods for constructing confidence and prediction intervals Ideal as a textbook for MBA and graduate-level courses in applied neural network modeling, artificial intelligence, advanced data analysis, time series, and forecasting in financial engineering, the book is also useful as a supplement for courses in informatics, identification and modeling for complex nonlinear systems, and computational finance. In addition, the book serves as a valuable reference for researchers and practitioners in the fields of mathematical modeling, engineering, artificial intelligence, decision science, neural networks, and finance and economics.

Design, Evaluation, and Analysis of Questionnaires for Survey Research, 2nd Edition

Design, Evaluation, and Analysis of Questionnaires for Survey Research, Second Edition explores updates on the statistical knowledge and development of survey questionnaires, including analyzing the important decisions researchers make throughout the survey design process. The new edition provides coverage of an updated SQP program, which has an expanded question database from the Multi-trait Multi-method (MTMM) experiments. This book aims to give students and survey researchers a state-of-the-art introduction to questionnaire design and how to construct questionnaires with the highest relevance and accuracy. The pitfalls of questionnaire design are outlined throughout the book, which alerts designers of questionnaires to the many prior decisions that will affect the quality of the research outcome. It is important to measure the quality of questions at the outset in order for students and researchers to consider the consequences and methods of achieving reliable and effective questions.

Getting Started in Chart Patterns, 2nd Edition

Your plain-English guide to understanding and using technical chart patterns Chart pattern analysis is not only one of the most important investing tools, but also one of the most popular. Filled with expert insights and practical advice from one of the best in the business, Getting Started in Chart Patterns, Second Edition helps new and seasoned traders alike profit by tracking and identifying specific chart patterns. Substantially revised and expanded, this new edition stay true to the original, with author Thomas Bulkowski's frank discussion of how trading behavior can affect the bottom line. Interwoven throughout the technical presentations are fascinating anecdotes drawn from the author's quarter-century as a professional trader that vividly demonstrate how one of the best in the business leverages the power of chart patterns. Includes additional charts for ETFs and mutual funds Introduces more than 40 key chart formations, as well as trading tactics that can be used in conjunction with them Supplies actual trades, with their corresponding dollar amounts If you're looking to gain a better understanding of this discipline, look no further than the Second Edition of Getting Started in Chart Patterns.

Repeated Measurements and Cross-Over Designs

An introduction to state-of-the-art experimental design approaches to better understand and interpret repeated measurement data in cross-over designs. Repeated Measurements and Cross-Over Designs: Features the close tie between the design, analysis, and presentation of results Presents principles and rules that apply very generally to most areas of research, such as clinical trials, agricultural investigations, industrial procedures, quality control procedures, and epidemiological studies Includes many practical examples, such as PK/PD studies in the pharmaceutical industry, k-sample and one sample repeated measurement designs for psychological studies, and residual effects of different treatments in controlling conditions such as asthma, blood pressure, and diabetes. Utilizes SAS(R) software to draw necessary inferences. All SAS output and data sets are available via the book's related website. This book is ideal for a broad audience including statisticians in pre-clinical research, researchers in psychology, sociology, politics, marketing, and engineering.

Statistics: Principles and Methods, 7th Edition

Johnson/Bhattacharyya is unique in its clarity of exposition while maintaining the mathematical correctness of its explanations. Many other books that claim to be easier to understand often sacrifice mathematical rigor. In contrast, Johnson/ Bhattacharyya maintain a focus on accuracy without getting bogged down in unnecessary details.

Displaying Time Series, Spatial, and Space-Time Data with R

Code and Methods for Creating High-Quality Data GraphicsA data graphic is not only a static image, but it also tells a story about the data. It activates cognitive processes that are able to detect patterns and discover information not readily available with the raw data. This is particularly true for time series, spatial, and space-time datasets.F

Statistical Analysis: Microsoft® Excel® 2013

Use Excel 2013’s statistical tools to transform your data into knowledge Conrad Carlberg shows how to use Excel 2013 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features, including recently introduced consistency functions. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes. You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, this edition adds two more chapters on inferential statistics, covering crucial topics ranging from experimental design to the statistical power of F tests. Becoming an expert with Excel statistics has never been easier! You’ll find crystal-clear instructions, insider insights, and complete step-by-step projects—all complemented by extensive web-based resources. Master Excel’s most useful descriptive and inferential statistical tools Tell the truth with statistics—and recognize when others don’t Accurately summarize sets of values Infer a population’s characteristics from a sample’s frequency distribution Explore correlation and regression to learn how variables move in tandem Use Excel consistency functions such as STDEV.S() and STDEV.P() Test differences between two means using z tests, t tests, and Excel’s Data Analysis Add-in Use ANOVA to test differences between more than two means Explore statistical power by manipulating mean differences, standard errors, directionality, and alpha Take advantage of Recommended PivotTables, Quick Analysis, and other Excel 2013 shortcuts

Economic and Business Forecasting: Analyzing and Interpreting Econometric Results

Discover the secrets to applying simple econometric techniques to improve forecasting Equipping analysts, practitioners, and graduate students with a statistical framework to make effective decisions based on the application of simple economic and statistical methods, Economic and Business Forecasting offers a comprehensive and practical approach to quantifying and accurate forecasting of key variables. Using simple econometric techniques, author John E. Silvia focuses on a select set of major economic and financial variables, revealing how to optimally use statistical software as a template to apply to your own variables of interest. Presents the economic and financial variables that offer unique insights into economic performance Highlights the econometric techniques that can be used to characterize variables Explores the application of SAS software, complete with simple explanations of SAS-code and output Identifies key econometric issues with practical solutions to those problems Presenting the "ten commandments" for economic and business forecasting, this book provides you with a practical forecasting framework you can use for important everyday business applications.

Excel Dashboards and Reports For Dummies, 2nd Edition

Create dynamic dashboards and put your data on display with For Dummies No matter what business you're in, reports have become a staple of the workplace, but what good is a report if no reads it, or even worse, understands it? This all new edition of Excel Dashboards & Reports For Dummies is here to help you make meaning of all your data and turn it into clear and actionable visualizations. Fully updated for the latest business intelligence and spreadsheet tools in Excel 2013, this book shows you how to analyze large amounts of data, quickly slice data into various views on the fly, automate redundant reporting, create eye-catching visualizations, and more. Helps you move beyond reporting data with simple tables, rows, and columns to designing high-impact reports, dashboards, and visuals Walks you through a wide array of technical and analytical concepts to give you the background you need to select the right tool for interpreting and displaying data Covers how to build a chart, work with pivot tables, group and bucket your data, represent trends, create What-If analyses, and increase the value of your reports Excel Dashboards & Reports For Dummies, 2nd Edition is the business analysis tool you need to transform your raw data into a powerful and effective presentation that is accessible to everyone.