talk-data.com talk-data.com

Topic

data

2093

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Using Open Source Platforms for Business Intelligence

Open Source BI solutions have many advantages over traditional proprietary software, from offering lower initial costs to more flexible support and integration options; but, until now, there has been no comprehensive guide to the complete offerings of the OS BI market. Writing for IT managers and business analysts without bias toward any BI suite, industry insider Lyndsay Wise covers the benefits and challenges of all available open source BI systems and tools, enabling readers to identify the solutions and technologies that best meet their business needs. Wise compares and contrasts types of OS BI and proprietary tools on the market, including Pentaho, Jaspersoft, RapidMiner, SpagoBI, BIRT, and many more. Real-world case studies and project templates clarify the steps involved in implementing open source BI, saving new users the time and trouble of developing their own solutions from scratch. For business managers who are hard pressed to indentify the best BI solutions and software for their companies, this book provides a practical guide to evaluating the ROI of open source versus traditional BI deployments. The only book to provide complete coverage of all open source BI systems and tools specifically for business managers, without bias toward any OS BI suite A practical, step-by-step guide to implementing OS BI solutions that maximize ROI Comprehensive coverage of all open source systems and tools, including architectures, data integration, support, optimization, data mining, data warehousing, and interoperability Case studies and project templates enable readers to evaluate the benefits and tradeoffs of all OS BI options without having to spend time developing their own solutions from scratch

QlikView 11 for Developers

In 'QlikView 11 for Developers', you will learn how to leverage QlikView to create robust, insightful business intelligence applications. By following the case study of HighCloud Airlines, this book offers a practical, step-by-step guide to developing and mastering QlikView to address real-world data analysis needs. What this Book will help me do Build comprehensive QlikView dashboards with advanced techniques. Understand how to create associative data models by integrating different data sources. Design interactive user interfaces to enable insightful analysis. Apply best practices in QlikView scripting to transform and prepare data. Master QlikView's built-in functions for calculations and analyses. Author(s) The authors of 'QlikView 11 for Developers' bring extensive experience in business intelligence and QlikView application development. With backgrounds in software engineering and data visualization, they combine technical rigor with practical insights. Their teaching approach ensures concepts are accessible and actionable for a wide range of learners. Who is it for? This book is ideal for software developers and data analysts who want to harness QlikView to build business intelligence applications. It is tailored for those with a basic understanding of business intelligence looking to deepen their expertise in QlikView. The content is also valuable for power users seeking efficiency through advanced features. Readers will gain practical, hands-on knowledge by following this guide.

The Essential R Reference

An essential library of basic commands you can copy and paste into R The powerful and open-source statistical programming language R is rapidly growing in popularity, but it requires that you type in commands at the keyboard rather than use a mouse, so you have to learn the language of R. But there is a shortcut, and that's where this unique book comes in. A companion book to Visualize This: The FlowingData Guide to Design, Visualization, and Statistics, this practical reference is a library of basic R commands that you can copy and paste into R to perform many types of statistical analyses. Whether you're in technology, science, medicine, business, or engineering, you can quickly turn to your topic in this handy book and find the commands you need. Comprehensive command reference for the R programming language and a companion book to Visualize This: The FlowingData Guide to Design, Visualization, and Statistics Combines elements of a dictionary, glossary, and thesaurus for the R language Provides easy accessibility to the commands you need, by topic, which you can cut and paste into R as needed Covers getting, saving, examining, and manipulating data; statistical test and math; and all the things you can do with graphs Also includes a collection of utilities that you'll find useful Simplify the complex statistical R programming language with The Essential R Reference.

SciPy and NumPy

Are you new to SciPy and NumPy? Do you want to learn it quickly and easily through examples and a concise introduction? Then this is the book for you. You’ll cut through the complexity of online documentation and discover how easily you can get up to speed with these Python libraries. Ideal for data analysts and scientists in any field, this overview shows you how to use NumPy for numerical processing, including array indexing, math operations, and loading and saving data. You’ll learn how SciPy helps you work with advanced mathematical functions such as optimization, interpolation, integration, clustering, statistics, and other tools that take scientific programming to a whole new level. The new edition is now available, fully revised and updated in June 2013. Learn the capabilities of NumPy arrays, element-by-element operations, and core mathematical operations Solve minimization problems quickly with SciPy’s optimization package Use SciPy functions for interpolation, from simple univariate to complex multivariate cases Apply a variety of SciPy statistical tools such as distributions and functions Learn SciPy’s spatial and cluster analysis classes Save operation time and memory usage with sparse matrices

Data Jujitsu: The Art of Turning Data into Product

Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu. Learn how to use a problem's "weight" against itself to: Break down seemingly complex data problems into simplified parts Use alternative data analysis techniques to examine them Use human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.

Bayesian Methods in Health Economics

Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.

Data Mining Methods for the Content Analyst

With continuous advancements and an increase in user popularity, data mining technologies serve as an invaluable resource for researchers across a wide range of disciplines in the humanities and social sciences. In this comprehensive guide, author and research scientist Kalev Leetaru introduces the approaches, strategies, and methodologies of current data mining techniques, offering insights for new and experienced users alike. Designed as an instructive reference to computer-based analysis approaches, each chapter of this resource explains a set of core concepts and analytical data mining strategies, along with detailed examples and steps relating to current data mining practices. Every technique is considered with regard to context, theory of operation and methodological concerns, and focuses on the capabilities and strengths relating to these technologies. In addressing critical methodologies and approaches to automated analytical techniques, this work provides an essential overview to a broad innovative field.

Statistics for Economics

Statistics is the branch of mathematics that deals with real-life problems. As such, it is an essential tool for economists. Unfortunately, the way you and many other economists learn the concept of statistics is not compatible with the way economists think and learn. The problem is worsened by the use of mathematical jargon and complex derivations. Here’s a book that proves none of this is necessary. All the examples and exercises in this book are constructed within the field of economics, thus eliminating the difficulty of learning statistics with examples from fields that have no relation to business, politics, or policy. Statistics is, in fact, not more difficult than economics. Anyone who can comprehend economics can understand and use statistics successfully within this field, including you! This book utilizes Microsoft Excel to obtain statistical results, as well as to perform additional necessary computations. Microsoft Excel is not the software of choice for performing sophisticated statistical analysis. However, it is widely available, and almost everyone has some degree of familiarity with it. Using Excel will eliminate the need for students and readers to buy and learn new software, the need that itself would prove to be another impediment to learning and using statistics.

Statistics in a Nutshell, 2nd Edition

Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts. Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book. Learn basic concepts of measurement and probability theory, data management, and research design Discover basic statistical procedures, including correlation, the t-test, the chi-square and Fisher’s exact tests, and techniques for analyzing nonparametric data Learn advanced techniques based on the general linear model, including ANOVA, ANCOVA, multiple linear regression, and logistic regression Use and interpret statistics for business and quality improvement, medical and public health, and education and psychology Communicate with statistics and critique statistical information presented by others

Computational Statistics, 2nd Edition

This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization Integration and Simulation Bootstrapping Density Estimation and Smoothing Within these sections, each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice. Note: The ebook version does not provide access to the companion files.

Data Mining for Bioinformatics

Data Mining for Bioinformatics enables researchers to meet the challenge of mining vast amounts of biomolecular data to discover real knowledge. Covering theory, algorithms, and methodologies, as well as data mining technologies, it presents a thorough discussion of data-intensive computations used in data mining applied to bioinformatics. The book explains data mining design concepts to build applications and systems. Showing how to prepare raw data for the mining process, the text is filled with heuristics that speed the data mining process.

Visual Guide to Chart Patterns

The step-by-step visual guide to spotting potential price movements and improving returns Bloomberg Visual Guide to Chart Patterns is a concise and accessible visual guide to identifying, understanding, and using chart patterns to predict the direction and extent of price moves. Packed with visual learning enhancements and exercises, this innovative book helps savvy investors and professionals alike master the essential skills of chart pattern recognition. Follow along as chart pattern expert Thomas Bulkowski teaches you to recognize important peaks and valleys that form patterns—footprints of the smart money. Nearly 200 color charts assist in providing a step-by-step approach to finding those footprints, interpreting them, and following them. Popular patterns such as head-and-shoulders, double tops and bottoms, triangles, gaps, flags, and pennants are just a few of the many patterns explored throughout the book. For the sophisticated trader or investor, the book also provides statistical research to support the claims of pattern behavior, trading signals, and setups, in an easy to understand way. Discusses chart pattern identification guidelines, psychology, variations, failures, and buy and sell signals Covers the most popular and common chart patterns as well as lesser-known ones like throwbacks, pullbacks, and busted patterns Incorporates quizzes, step-by-step exercises, enhanced graphics and video tutorials to immerse the reader in the world of chart patterns Designed for use by investors and traders, from beginners to experts looking for a practical, easy-to-use guide, comprehensive reference, Bloomberg Visual Guide to Chart Patterns provides a sophisticated introduction to the world of chart patterns.

An Introduction to Analysis of Financial Data with R

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.

Data Clean-Up and Management

Data use in the library has specific characteristics and common problems. Data Clean-up and Management addresses these, and provides methods to clean up frequently-occurring data problems using readily-available applications. The authors highlight the importance and methods of data analysis and presentation, and offer guidelines and recommendations for a data quality policy. The book gives step-by-step how-to directions for common dirty data issues. Focused towards libraries and practicing librarians Deals with practical, real-life issues and addresses common problems that all libraries face Offers cradle-to-grave treatment for preparing and using data, including download, clean-up, management, analysis and presentation

Python for Data Analysis

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It’s ideal for analysts new to Python and for Python programmers new to scientific computing. Use the IPython interactive shell as your primary development environment Learn basic and advanced NumPy (Numerical Python) features Get started with data analysis tools in the pandas library Use high-performance tools to load, clean, transform, merge, and reshape data Create scatter plots and static or interactive visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Measure data by points in time, whether it’s specific instances, fixed periods, or intervals Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

Beginning R: An Introduction to Statistical Programming

Beginning R: An Introduction to Statistical Programming is a hands-on book showing how to use the R language, write and save R scripts, build and import data files, and write your own custom statistical functions. R is a powerful open-source implementation of the statistical language S, which was developed by AT&T. R has eclipsed S and the commercially-available S-Plus language, and has become the de facto standard for doing, teaching, and learning computational statistics. R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research. Covers the freely-available R language for statistics Shows the use of R in specific uses case such as simulations, discrete probability solutions, one-way ANOVA analysis, and more Takes a hands-on and example-based approach incorporating best practices with clear explanations of the statistics being done What you'll learn Acquire and install R Import and export data and scripts Generate basic statistics and graphics Program in R to write custom functions Use R for interactive statistical explorations Implement simulations and other advanced techniques Who this book is for Beginning R: An Introduction to Statistical Programming is an easy-to-read book that serves as an instruction manual and reference for working professionals, professors, and students who want to learn and use R for basic statistics. It is the perfect book for anyone needing a free, capable, and powerful tool for exploring statistics and automating their use.

The Little SAS® Book: A Primer

A classic that just keeps getting better, The Little SAS Book The fifth edition has been completely updated to reflect the new default output introduced with SAS 9.3. In addition, there is a now a full chapter devoted to ODS Graphics including the SGPLOT and SGPANEL procedures. Other changes include expanded coverage of linguistic sorting and a new section on concatenating macro variables with other text. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you'll return to as you continue to improve your programming skills.

R in a Nutshell, 2nd Edition

If you’re considering R for statistical computing and data visualization, this book provides a quick and practical guide to just about everything you can do with the open source R language and software environment. You’ll learn how to write R functions and use R packages to help you prepare, visualize, and analyze data. Author Joseph Adler illustrates each process with a wealth of examples from medicine, business, and sports. Updated for R 2.14 and 2.15, this second edition includes new and expanded chapters on R performance, the ggplot2 data visualization package, and parallel R computing with Hadoop. Get started quickly with an R tutorial and hundreds of examples Explore R syntax, objects, and other language details Find thousands of user-contributed R packages online, including Bioconductor Learn how to use R to prepare data for analysis Visualize your data with R’s graphics, lattice, and ggplot2 packages Use R to calculate statistical fests, fit models, and compute probability distributions Speed up intensive computations by writing parallel R programs for Hadoop Get a complete desktop reference to R

Service-Oriented Distributed Knowledge Discovery

A new approach to distributed large-scale data mining, service-oriented knowledge discovery extracts useful knowledge from often unmanageable volumes of data by exploiting data mining and machine learning distributed models and techniques in service-oriented infrastructures. Service-Oriented Distributed Knowledge Discovery presents techniques, algorithms, and systems based on the service-oriented paradigm. It explains how to design services for data analytics, describes real systems for implementing distributed knowledge discovery applications, and explores mobile data mining models.

The Pragmatic MBA for Scientific and Technical Executives

This primer enables professionals with technical expertise to collaborate with their business-side colleagues. Emphasizing brevity and clarity, it gives technical staff answers to their most pressing questions about economics, finance, marketing, strategic decision-making, accounting, management, and related subjects. It does not offer condensed 1st year MBA courses; instead, it presents streamlined concepts and insights that are easy enough to be accessible and challenging enough to hold one's interest. Its examples from pharma, IT, aircraft/navigation, and other industries highlight problems that technical professionals face daily. Written by "one of them," its credibility makes it more useful than Internet resources. Because it concentrates on pragmatic (as opposed to academic) approaches to business, it empowers technical staff to stay with the conversation--and take it to a higher level. Bertrand C. Liang, MD, PhD, MBA, is Managing Director of LCC Ventures and Executive Director of Pfenex, Inc. He is trained in molecular biology and genetics (PhD) and is a clinician (MD) with subspecialty training in neurology and oncology, and serves as a Visiting University Professor at Liaoning He University, Shenyang, China. Creates frameworks and builds concepts enabling technical staff to work with their business colleagues Delivers content for pragmatic, immediate use, not condensed presentations of subjects from first year MBA curriculum Extends readers' grasp by posting additional resources at a freely-available website