talk-data.com talk-data.com

Topic

Fabric

Microsoft Fabric

databricks data_plaform microsoft azure data_warehouse analytics data_analysis

323

tagged

Activity Trend

67 peak/qtr
2020-Q1 2026-Q1

Activities

323 activities · Newest first

Many developers, including myself, advocate for a code-first approach to development, an approach that can offer significant advantages to no-code/low code development in numerous scenarios. If you're unfamiliar with this concept, don’t worry; I’ll start with a quick introduction to explain why it matters. From there, we’ll dive deeper into the capabilities of notebooks in Microsoft Fabric. A notebook is far more than just a code file; It is a powerful development tool that enables efficient problem-solving, streamlines workflows, and enhances maintainability. I’ll demonstrate lesser-known tricks to make your development process smoother and your maintenance efforts more intuitive. And if you or your crew is new to pySpark, don't worry: I'll give you an insight on how to get on board for this in a relatively short time. Agenda: 12.45 - 13:00 : Speaker Setup and Join 13:00 - 13:05 : Open Lobby to guests and Introductions 13:05 - 14:00 : Microsoft Fabrics Notebook Deep Dive with Kay Sauter

Explore how Snowflake and Microsoft collaborate to transform data and AI workflows. Learn to operate on a single data copy between Microsoft Fabric OneLake and Snowflake via Apache Iceberg, eliminating duplication. Discover Real-Time RAG AI Agents that integrate Snowflake's trusted data and enterprise systems for instant Microsoft Copilot responses, without copying data. Unlock Real-Time Actions using PowerApps with live query and writeback to Snowflake, all with no code. Simplify and innovate with these powerful tools.

Avec les solutions Azure de Microsoft et Snowflake, Oney Bank construit une plateforme Data unifiée, agile et sécurisée. Découvrez comment Fabric OneLake, Copilot Studio et Cortex s'intègrent au Snowflake Data Cloud pour accélérer l'innovation, déployer l'IA à grande échelle et générer de la valeur tout en répondant aux exigences réglementaires les plus strictes.

LBPAM, a leader in the ESG/ISR product in France, will present its ESG/ISR product data fabric. By combining multiple sources of data from notation agencies, annual reports, web scraping and a Data Hub that uses semantic technology, LBPAM has built a solution for asset managers to build ESG/ISR products by design.

LBPAM, leader des produits ESG/ISR en France, présentera son « data fabric » pour les produits ESG/ISR. En combinant plusieurs sources de données provenant des agences de notation, des rapports annuels, du web scraping et d’un Data Hub utilisant la technologie sémantique, LBPAM a développé une solution permettant aux gestionnaires d’actifs de créer des produits ESG/ISR dès la conception.

Découvrez comment Veolia transforme ses opérations industrielles grâce à Microsoft Fabric Real-Time Intelligence, en centralisant et visualisant ses données de séries temporelles pour des décisions rapides et éclairées. Grâce à cette approche, Veolia a pu accélérer la prise de décision, optimiser ses interventions terrain, et renforcer la réactivité opérationnelle dans un environnement sécurisé et gouverné.

Explore how Snowflake and Microsoft collaborate to transform data and AI workflows. Learn to operate on a single data copy between Microsoft Fabric OneLake and Snowflake via Apache Iceberg, eliminating duplication. Discover Real-Time RAG AI Agents that integrate Snowflake's trusted data and enterprise systems for instant Microsoft Copilot responses, without copying data. Unlock Real-Time Actions using PowerApps with live query and writeback to Snowflake, all with no code. Simplify and innovate with these powerful tools.

Session sur le chargement sécurisé des fichiers Excel depuis SharePoint vers Microsoft Fabric, avec: 1) pourquoi éviter Dataflows Gen2 et quelles alternatives pour optimiser les coûts; 2) mise en place d'une authentification programmatique pour fiabiliser les pipelines; 3) bonnes pratiques de gestion des permissions pour une solution pérenne et sécurisée.

Discover how to build a powerful AI Lakehouse and unified data fabric natively on Google Cloud. Leverage BigQuery's serverless scale and robust analytics capabilities as the core, seamlessly integrating open data formats with Apache Iceberg and efficient processing using managed Spark environments like Dataproc. Explore the essential components of this modern data environment, including data architecture best practices, robust integration strategies, high data quality assurance, and efficient metadata management with Google Cloud Data Catalog. Learn how Google Cloud's comprehensive ecosystem accelerates advanced analytics, preparing your data for sophisticated machine learning initiatives and enabling direct connection to services like Vertex AI. 

According to MIT, 95% of organisations are seeing no return from their GenAI investments. Why? Because value doesn’t come from models alone. It comes from trust, governance, and people. Learn how organisations are breaking through the hype using Microsoft Fabric to unify data, Purview to govern it, and Copilot to empower every user. With a real-world customer story and a clear blueprint for action, this session will help you join the 5% who are turning AI ambition into impact.

Send us a text In this episode, we're joined by Sam Debruyn and Dorian Van den Heede who reflect on their talks at SQL Bits 2025 and dive into the technical content they presented. Sam walks through how dbt integrates with Microsoft Fabric, explaining how it improves lakehouse and warehouse workflows by adding modularity, testing, and documentation to SQL development. He also touches on Fusion’s SQL optimization features and how it compares to tools like SQLMesh. Dorian shares his MLOps demo, which simulates beating football bookmakers using historical data,nshowing how to build a full pipeline with Azure ML, from feature engineering to model deployment. They discuss the role of Python modeling in dbt, orchestration with Azure ML, and the practical challenges of implementing MLOps in real-world scenarios. Toward the end, they explore how AI tools like Copilot are changing the way engineers learn and debug code, raising questions about explainability, skill development, and the future of junior roles in tech. It’s rich conversation covering dbt, MLOps, Python, Azure ML, and the evolving role of AI in engineering.