talk-data.com talk-data.com

Topic

SAS

statistical_software analytics data_management

245

tagged

Activity Trend

8 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
SAS Certified Specialist Prep Guide

The SAS® Certified Specialist Prep Guide: Base Programming Using SAS® 9.4 prepares you to take the new SAS 9.4 Base Programming -- Performance-Based Exam. This is the official guide by the SAS Global Certification Program. This prep guide is for both new and experienced SAS users, and it covers all the objectives that are tested on the exam. New in this edition is a workbook whose sample scenarios require you to write code to solve problems and answer questions. Answers for the chapter quizzes and solutions for the sample scenarios in the workbook are included. You will also find links to exam objectives, practice exams, and other resources such as the Base SAS® glossary and a list of practice data sets. Major topics include importing data, creating and modifying SAS data sets, and identifying and correcting both data syntax and programming logic errors. All exam topics are covered in these chapters: Setting Up Practice Data Basic Concepts Accessing Your Data Creating SAS Data Sets Identifying and Correcting SAS Language Errors Creating Reports Understanding DATA Step Processing BY-Group Processing Creating and Managing Variables Combining SAS Data Sets Processing Data with DO Loops SAS Formats and Informats SAS Date, Time, and Datetime Values Using Functions to Manipulate Data Producing Descriptive Statistics Creating Output Practice Programming Scenarios (Workbook)

Linear Models and Time-Series Analysis

A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.

SAS Certification Prep Guide

Must-have study guide for the SAS® Certified Statistical Business Analyst Using SAS®9: Regression and Modeling exam! Written for both new and experienced SAS programmers, the SAS® Certification Prep Guide: Statistical Business Analysis Using SAS®9 is an in-depth prep guide for the SAS® Certified Statistical Business Analyst Using SAS®9: Regression and Modeling exam. The authors step through identifying the business question, generating results with SAS, and interpreting the output in a business context. The case study approach uses both real and simulated data to master the content of the certification exam. Each chapter also includes a quiz aimed at testing the reader’s comprehension of the material presented. Major topics include: ANOVA Linear Regression Logistic Regression Inputs for Predictive Modeling Model Performance For those new to statistical topics or those needing a review of statistical foundations, this book also serves as an excellent reference guide for understanding descriptive and inferential statistics. This book is part of the SAS Press program.

SAS for Mixed Models

This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book is part of the SAS Press program. Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models

Applied Health Analytics and Informatics Using SAS

Leverage health data into insight! Applied Health Analytics and Informatics Using SAS describes health anamatics, a result of the intersection of data analytics and health informatics. Healthcare systems generate nearly a third of the world’s data, and analytics can help to eliminate medical errors, reduce readmissions, provide evidence-based care, demonstrate quality outcomes, and add cost-efficient care. This comprehensive textbook includes data analytics and health informatics concepts, along with applied experiential learning exercises and case studies using SAS Enterprise MinerTM within the healthcare industry setting. Topics covered include: Sampling and modeling health data – both structured and unstructured Exploring health data quality Developing health administration and health data assessment procedures Identifying future health trends Analyzing high-performance health data mining models Applied Health Analytics and Informatics Using SAS is intended for professionals, lifelong learners, senior-level undergraduates, graduate-level students in professional development courses, health informatics courses, health analytics courses, and specialized industry track courses. This textbook is accessible to a wide variety of backgrounds and specialty areas, including administrators, clinicians, and executives. This book is part of the SAS Press program.

Jump into JMP Scripting, Second Edition, 2nd Edition

Learn the essentials of the JMP Scripting Language with this beginner’s guide. Written in an easy-to-understand style based on the authors’ extensive experience, Jump into JMP Scripting, Second Edition teaches beginner scripters how to take advantage of the robust JMP Scripting Language (JSL) using step-by-step instructions and real-world situations. The authors demonstrate how JSL offers the freedom to create scripts from the very simple and specific to the most generic and complex. With a new chapter on JSL language foundations, the first half of the book explains the fundamentals of JSL and walks you through creating your first scripts, such as opening a data table, adding columns, or selecting rows. A new chapter on the Dashboard and Application Builders provides helpful tips on creating custom dashboards and learning how to build applications. Also new to this edition, a chapter on advanced topics introduces more helpful tools and concepts in JSL. After learning the basics, you are ready to tackle specific tasks using JSL. The second half of the book provides more than 50 examples using a unique question-and-answer format. This book is part of the SAS Press program.

Pharmaceutical Quality by Design Using JMP

Solve your pharmaceutical product development and manufacturing problems using JMP . Pharmaceutical Quality by Design Using JMP : Solving Product Development and Manufacturing Problems provides broad-based techniques available in JMP to visualize data and run statistical analyses for areas common in healthcare product manufacturing. As international regulatory agencies push the concept of Quality by Design (QbD), there is a growing emphasis to optimize the processing of products. This book uses practical examples from the pharmaceutical and medical device industries to illustrate easy-to-understand ways of incorporating QbD elements using JMP. Pharmaceutical Quality by Design Using JMP opens by demonstrating the easy navigation of JMP to visualize data through the distribution function and the graph builder and then highlights the following: the powerful dynamic nature of data visualization that enables users to be able to quickly extract meaningful information tools and techniques designed for the use of structured, multivariate sets of experiments examples of complex analysis unique to healthcare products such as particle size distributions/drug dissolution, stability of drug products over time, and blend uniformity/content uniformity. Scientists, engineers, and technicians involved throughout the pharmaceutical and medical device product life cycles will find this book invaluable. This book is part of the SAS Press program.

Unstructured Data Analysis

Unstructured data is the most voluminous form of data in the world, and several elements are critical for any advanced analytics practitioner leveraging SAS software to effectively address the challenge of deriving value from that data. This book covers the five critical elements of entity extraction, unstructured data, entity resolution, entity network mapping and analysis, and entity management. By following examples of how to apply processing to unstructured data, readers will derive tremendous long-term value from this book as they enhance the value they realize from SAS products.

SAS Certification Prep Guide, 5th Edition

Prepare for the SAS Base Programming for SAS 9 exam with the official guide by the SAS Global Certification Program. New and experienced SAS users who want to prepare for the SAS Base Programming for SAS 9 exam will find this guide to be a valuable resource that covers all of the objectives tested on the exam. Now in its fifth edition, the guide has been extensively updated and revised to streamline explanations. Major topics include importing data, creating and modifying SAS data sets, and identifying and correcting data syntax and programming logic errors. The chapter quizzes have been thoroughly updated and full solutions are included at the back of the book. In addition, links are provided to the exam objectives, practice exams, and other helpful resources, such as the updated Base SAS glossary and an expanded collection of practice data sets.

Applied Analytics through Case Studies Using SAS and R: Implementing Predictive Models and Machine Learning Techniques

Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniques Create and apply analytical strategies Who This Book Is For Data scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling.

Data Management Solutions Using SAS Hash Table Operations

Hash tables can do a lot more than you might think! Data Management Solutions Using SAS Hash Table Operations: A Business Intelligence Case Study concentrates on solving your challenging data management and analysis problems via the power of the SAS hash object, whose environment and tools make it possible to create complete dynamic solutions. To this end, this book provides an in-depth overview of the hash table as an in-memory database with the CRUD (Create, Retrieve, Update, Delete) cycle rendered by the hash object tools. By using this concept and focusing on real-world problems exemplified by sports data sets and statistics, this book seeks to help you take advantage of the hash object productively, in particular, but not limited to, the following tasks: Using this book, you will be able to answer your toughest questions quickly and in the most efficient way possible! select proper hash tools to perform hash table operations use proper hash table operations to support specific data management tasks use the dynamic, run-time nature of hash object programming understand the algorithmic principles behind hash table data look-up, retrieval, and aggregation learn how to perform data aggregation, for which the hash object is exceptionally well suited manage the hash table memory footprint, especially when processing big data use hash object techniques for other data processing tasks, such as filtering, combining, splitting, sorting, and unduplicating.

Learning SAS by Example

Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter.

SAS for Finance

SAS for Finance introduces readers to utilizing SAS software for robust financial data analysis and model construction. Through hands-on examples and industry-focused techniques, this book demonstrates how to harness the power of SAS to develop effective analytical models, allowing you to uncover deeper insights and facilitate data-informed decision-making. What this Book will help me do Master the fundamentals of financial time series analysis using SAS effectively. Develop advanced forecasting models utilizing econometric techniques with SAS. Use clustering and similarity analysis in SAS to understand customer behavior. Create and interpret survival models for customer loyalty analysis. Gain proficiency in financial risk assessment using SAS for diversified applications. Author(s) None Gulati brings years of expertise in financial analytics and technical instruction to this publication. With a rich background in leveraging statistical software, the author has guided financial analysts and data scientists in building data models that solve real-world challenges. Known for practical insights, None's approach makes advanced concepts accessible and actionable. Who is it for? This book is tailored for financial analysts and data scientists aspiring to enhance their analytical capabilities with SAS. While prior familiarity with SAS software provides an advantage, beginners can also find value, provided they have a foundational understanding of finance. Ideal for professionals aiming to model data, forecast trends, and derive actionable insights in the financial domain.

Infographics Powered by SAS

Create compelling business infographics with SAS and familiar office productivity tools. A picture is worth a thousand words, but what if there are a billion words? When analyzing big data, you need a picture that cuts through the noise. This is where infographics come in. Infographics are a representation of information in a graphic format designed to make the data easily understandable. With infographics, you don’t need deep knowledge of the data. The infographic combines story telling with data and provides the user with an approachable entry point into business data. Infographics Powered by SAS : Data Visualization Techniques for Business Reporting shows you how to create graphics to communicate information and insight from big data in the boardroom and on social media. Learn how to create business infographics for all occasions with SAS and learn how to build a workflow that lets you get the most from your SAS system without having to code anything, unless you want to! This book combines the perfect blend of creative freedom and data governance that comes from leveraging the power of SAS and the familiarity of Microsoft Office. Topics covered in this book include: SAS Visual Analytics SAS Office Analytics SAS/GRAPH software (SAS code examples) Data visualization with SAS Creating reports with SAS Using reports and graphs from SAS to create business presentations Using SAS within Microsoft Office

Practical Web Scraping for Data Science: Best Practices and Examples with Python

This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set. Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases. What You'll Learn Leverage well-established best practices and commonly-used Python packages Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques Understand the managerial and legal concerns regarding web scraping Who This Book is For A data science oriented audience that is probably already familiar with Python or another programming language or analytical toolkit (R, SAS, SPSS, etc). Students or instructors in university courses may also benefit. Readers unfamiliar with Python will appreciate a quick Python primer in chapter 1 to catch up with the basics and provide pointers to other guides as well.

Mastering the SAS DS2 Procedure

Enhance your SAS data-wrangling skills with high-precision and parallel data manipulation using the DS2 programming language. Now in its second edition, this book addresses the DS2 programming language from SAS, which combines the precise procedural power and control of the Base SAS DATA step language with the simplicity and flexibility of SQL. DS2 provides simple, safe syntax for performing complex data transformations in parallel and enables manipulation of native database data types at full precision. It also covers PROC FEDSQL, a modernized SQL language that blends perfectly with DS2. You will learn to harness the power of parallel processing to speed up CPU-intensive computing processes in Base SAS and how to achieve even more speed by processing DS2 programs on massively parallel database systems. Techniques for leveraging internet APIs to acquire data, avoiding large data movements when working with data from disparate sources, and leveraging DS2's new data types for full-precision numeric calculations are presented, with examples of why these techniques are essential for the modern data wrangler. Here's what's new in this edition: how to significantly improve performance by using the new SAS Viya architecture with its SAS Cloud Analytic Services (CAS) how to declare private variables and methods in a package the new PROC DSTODS2 the PCRXFIND and PCRXREPLACE packages While working though the code samples provided with this book, you will build a library of custom, reusable, and easily shareable DS2 program modules, execute parallelized DATA step programs to speed up a CPU-intensive process, and conduct advanced data transformations using hash objects and matrix math operations. This book is part of the SAS Press Series.

The SAS Programmer's PROC REPORT Handbook

Generate reports with style! The SAS Programmer's PROC REPORT Handbook: ODS Companion explains how to use style elements within a style template to customize reports generated by PROC REPORT, leading to more appealing and effective business reports. Many programmers are faced with generating reports that are easy to read and comprehend for a wide variety of audiences, which is where the ODS destinations and style changes come into play. This book teaches you how to use style elements in PROC REPORT, a versatile reporting procedure, to customize your output. Mastering style elements allows you to change visual aspects of reports, such as borders, column widths, fonts, backgrounds, and more. This companion to The SAS Programmer’s PROC REPORT Handbook: Basic to Advanced Reporting Techniques explores how the style elements within a style template affect the output generated by PROC REPORT. It provides examples of altering the style elements and the effect on the main ODS destinations, while also discussing common pitfalls that programmers can avoid while working with tables, Microsoft Excel, Microsoft Power Point, and PDF output.

SAS for Forecasting Time Series, Third Edition, 3rd Edition

To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.

SAS Viya

Learn how to access analytics from SAS Cloud Analytic Services (CAS) using Python and the SAS Viya platform. SAS Viya : The Python Perspective is an introduction to using the Python client on the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. This book focuses on the perspective of SAS Viya from Python. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. The Python client is used to drive the CAS component directly using objects and constructs that are familiar to Python programmers. Some knowledge of Python would be helpful before using this book; however, there is an appendix that covers the features of Python that are used in the CAS Python client. Knowledge of CAS is not required to use this book. However, you will need to have a CAS server set up and running to execute the examples in this book. With this book, you will learn how to: Install the required components for accessing CAS from Python Connect to CAS, load data, and run simple analyses Work with CAS using APIs familiar to Python users Grasp general CAS workflows and advanced features of the CAS Python client SAS Viya : The Python Perspective covers topics that will be useful to beginners as well as experienced CAS users. It includes examples from creating connections to CAS all the way to simple statistics and machine learning, but it is also useful as a desktop reference.