talk-data.com talk-data.com

Event

Data Engineering Podcast

2017-01-08 – 2025-11-24 Podcasts Visit website ↗

Activities tracked

485

This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Filtering by: Data Management ×

Sessions & talks

Showing 226–250 of 485 · Newest first

Search within this event →

Scalable Strategies For Protecting Data Privacy In Your Shared Data Sets

2022-02-06 Listen
podcast_episode
Will Thompson (Privacy Dynamics) , Tobias Macey

Summary There are many dimensions to the work of protecting the privacy of users in our data. When you need to share a data set with other teams, departments, or businesses then it is of utmost importance that you eliminate or obfuscate personal information. In this episode Will Thompson explores the many ways that sensitive data can be leaked, re-identified, or otherwise be at risk, as well as the different strategies that can be employed to mitigate those attack vectors. He also explains how he and his team at Privacy Dynamics are working to make those strategies more accessible to organizations so that you can focus on all of the other tasks required of you.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Your host is Tobias Macey and today I’m interviewing Will Thompson about managing data privacy concerns for data sets used in analytics and machine learning

Interview

Introduction How did you get involved in the area of data management? Data privacy is a multi-faceted problem domain. Can you start by enumerating the different categories of privacy concern that are involved in analytical use cases? Can you describe what Privacy Dynamics is and the story behind it?

Which categor(y|ies) are you focused on addressing?

What are some of the best practices in the definition, protection, and enforcement of data privacy policies?

Is there a data security/privacy equivalent to the OWASP top 10?

What are some of the techniques that are available for anonymizing data while maintaining statistical utility/significance?

What are some of the engineering/systems capabilities that are required for data (platform) engineers to incorporate these practices in their platforms?

What are the tradeoffs of encryption vs. obfuscation when anonymizing data? What are some of the types of PII that are non-obvious? What are the risks associated with data re-identification, and what are some of the vectors that might be exploited to achieve that?

How can privacy risks mitigation be maintained as new data sources are introduced that might contribute to these re-identification vectors?

Can you describe how Privacy Dynamics is implemented?

What are the most challenging engineering problems that you are dealing with?

How do you approach validation of a data set’s privacy? What have you found to be useful heuristics for identifying private data?

What are the risks of false positives vs. false negatives?

Can you describe what is involved in integrating the Privacy Dynamics system into an existing data platform/warehouse?

What would be required to integrate with systems such as Presto, Clickhouse, Druid, etc.?

What are the most interesting, innovative, or unexpected ways that you have seen Privacy Dynamics used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Privacy Dynamics? When is Privacy Dynamics the wrong choice? What do you have planned for the future of Privacy Dynamics?

Contact Info

LinkedIn @willseth on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers

Links

Privacy Dynamics Pandas

Podcast Episode – Pandas For Data Engineering

Homomorphic Encryption Differential Privacy Immuta

Podcast Episode

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

A Reflection On Learning A Lot More Than 97 Things Every Data Engineer Should Know

2022-01-31 Listen
podcast_episode

Summary The Data Engineering Podcast has been going for five years now and has included conversations and interviews with a huge number of guests, covering a broad range of topics. In addition to that, the host curated the essays contained in the book "97 Things Every Data Engineer Should Know", using the knowledge and context gained from running the show to inform the selection process. In this episode he shares some reflections on producing the podcast, compiling the book, and relevant trends in the ecosystem of data engineering. He also provides some advice for those who are early in their career of data engineering and looking to advance in their roles.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m doing something a bit different. I’m going to talk about some of the lessons that I have learned while running the podcast, compiling the book "97 Things Every Data Engineer Should Know", and some of the themes that I’ve observed throughout.

Interview

Introduction How did you get involved in the area of data management? Overview of the 97 things book

How the project came about Goals of the book

What are the paths into data engineering? What are some of the macroscopic themes in the industry? What are some of the microscopic details that are useful/necessary to succeed as a data engineer? What are some of the career/team/organizational details that are helpful for data engineers? What are the most interesting, innovative, or unexpected outcomes/feedback that I have seen from running the podcast and working on the book

Effective Pandas Patterns For Data Engineering

2022-01-31 Listen
podcast_episode

Summary Pandas is a powerful tool for cleaning, transforming, manipulating, or enriching data, among many other potential uses. As a result it has become a standard tool for data engineers for a wide range of applications. Matt Harrison is a Python expert with a long history of working with data who now spends his time on consulting and training. He recently wrote a book on effective patterns for Pandas code, and in this episode he shares advice on how to write efficient data processing routines that will scale with your data volumes, while being understandable and maintainable.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Your host is Tobias Macey and today I’m interviewing Matt Harrison about useful tips for using Pandas for data engineering projects

Interview

Introduction How did you get involved in the area of data management? What are the main tasks that you have seen Pandas used for in a data engineering context? What are some of the common mistakes that can lead to poor performance when scaling to large data sets? What are some of the utility features that you have found most helpful for data processing? One of the interesting add-ons to Pandas is its integration with Arrow. What are some of the considerations for how and when to use the Arrow capabilities vs. out-of-the-box Pandas? Pandas is a tool that spans data processing and data science. What are some of the ways that data engineers should think about writing their code to make it accessible to data scientists for supporting collaboration across data workflows? Pandas is often used for transformation logic. What are some of the ways that engineers should approach the design of their code to make it understandable and maint

Building And Managing Data Teams And Data Platforms In Large Organizations With Ashish Mrig

2022-01-23 Listen
podcast_episode

Summary Data engineering is a relatively young and rapidly expanding field, with practitioners having a wide array of experiences as they navigate their careers. Ashish Mrig currently leads the data analytics platform for Wayfair, as well as running a local data engineering meetup. In this episode he shares his career journey, the challenges related to management of data professionals, and the platform design that he and his team have built to power analytics at a large company. He also provides some excellent insights into the factors that play into the build vs. buy decision at different organizational sizes.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Your host is Tobias Macey and today I’m interviewing Ashish Mrig about his path as a data engineer

Interview

Introduction How did you get involved in the area of data management? You currently lead a data engineering team at a relatively large company. What are the topics that account for the majority of your time and energy? What are some of the most valuable lessons that you’ve learned about managing and motivating teams of data professionals? What has been your most consistent challenge across the different generations of the data ecosystem? How is your current data platform architected? Given the current state of the technology and services landscape, how would you approach the design and implementation of a greenfield rebuild of your platform? What are some of the pitfalls that you have seen data teams encounter most frequently? You are running a data engineering meetup for your local community in the Boston area. What have been some of the recurring themes that are discussed in those events?

Contact Info

Medium Blog LinkedIn

The Importance Of Data Contracts As The Interface For Data Integration With Abhi Sivasailam

2022-01-23 Listen
podcast_episode

Summary Data platforms are exemplified by a complex set of connections that are subject to a set of constantly evolving requirements. In order to make this a tractable problem it is necessary to define boundaries for communication between concerns, which brings with it the need to establish interface contracts for communicating across those boundaries. The recent move toward the data mesh as a formalized architecture that builds on this design provides the language that data teams need to make this a more organized effort. In this episode Abhi Sivasailam shares his experience designing and implementing a data mesh solution with his team at Flexport, and the importance of defining and enforcing data contracts that are implemented at those domain boundaries.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m interviewing Abhi Sivasailam about the different social and technical interfaces available for defining and enforcing data contracts

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what your working definition of a "data contract" is?

What are the goals and purpose of these contracts?

What are the locations and methods of defining a data contract?

What kind of information needs to be encoded in a contract definition?

How do you manage enforcement of contracts? manifestations of contracts in data mesh implementation ergonomics (technical and social) of data contracts and how to prevent them from prohibiting productivity What are the most interesting, innovative

Automated Data Quality Management Through Machine Learning With Anomalo

2022-01-15 Listen
podcast_episode
Elliot Shmukler (Anomalo) , Jeremy Stanley (Anomalo) , Tobias Macey

Summary Data quality control is a requirement for being able to trust the various reports and machine learning models that are relying on the information that you curate. Rules based systems are useful for validating known requirements, but with the scale and complexity of data in modern organizations it is impractical, and often impossible, to manually create rules for all potential errors. The team at Anomalo are building a machine learning powered platform for identifying and alerting on anomalous and invalid changes in your data so that you aren’t flying blind. In this episode founders Elliot Shmukler and Jeremy Stanley explain how they have architected the system to work with your data warehouse and let you know about the critical issues hiding in your data without overwhelming you with alerts.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Your host is Tobias Macey and today I’m interviewing Elliot Shmukler and Jeremy Stanley about Anomalo, a data quality platform aiming to automate issue detection with zero setup

Interview

Introduction How did you get involved in the area of data management? Can you describe what Anomalo is and the story behind it? Managing data quality is ostensibly about building trust in your data. What are the promises that data teams are able to make about the information in their control when they are using Anomalo?

What are some of the claims that cannot be made unequivocally when relying on data quality monitoring systems?

types of data quality issues identified

utility of automated vs programmatic tests

Can you describe how the Anomalo system is designed and implemented?

How have the design and goals of the platform changed or evolved since you started working on it?

What is your approach for validating changes to the business logic in your platform given the unpredictable nature of the system under test? model training/customization process statistical model seasonality/windowing CI/CD With any monitoring system the most challenging thing to do i

An Introduction To Data And Analytics Engineering For Non-Programmers

2022-01-15 Listen
podcast_episode

Summary Applications of data have grown well beyond the venerable business intelligence dashboards that organizations have relied on for decades. Now it is being used to power consumer facing services, influence organizational behaviors, and build sophisticated machine learning systems. Given this increased level of importance it has become necessary for everyone in the business to treat data as a product in the same way that software applications have driven the early 2000s. In this episode Brian McMillan shares his work on the book "Building Data Products" and how he is working to educate business users and data professionals about the combination of technical, economical, and business considerations that need to be blended for these projects to succeed.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m interviewing Brian McMillan about building data products and his book to introduce the work of data analysts and engineers to non-programmers

Interview

Introduction How did you get involved in the area of data management? Can you describe what motivated you to write a book about the work of building data products?

Who is your target audience? What are the main goals that you are trying to achieve through the book?

What

Open Source Reverse ETL For Everyone With Grouparoo

2022-01-08 Listen
podcast_episode
Brian Leonard (Grouparoo) , Tobias Macey

Summary Reverse ETL is a product category that evolved from the landscape of customer data platforms with a number of companies offering their own implementation of it. While struggling with the work of automating data integration workflows with marketing, sales, and support tools Brian Leonard accidentally discovered this need himself and turned it into the open source framework Grouparoo. In this episode he explains why he decided to turn these efforts into an open core business, how the platform is implemented, and the benefits of having an open source contender in the landscape of operational analytics products.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Brian Leonard about Grouparoo, an open source framework for managing your reverse ETL pipelines

Interview

Introduction How did you get involved in the area of data management? Can you describe what Grouparoo is and the story behind it? What are the core requirements for building a reverse ETL system?

What are the additional capabilities that users of the system ask for as they get more advanced in their usage?

Who is your target user for Grouparoo and how does that influence your priorities on feature development and UX design? What are the benefits of building an open source core for a reverse ETL platform as compared to the other commercial options? Can you describe the architecture and implementation of the Grouparoo project?

What are the additional systems that you have built to support the hosted offering? How have the design and goals of the

Data Observability Out Of The Box With Metaplane

2022-01-08 Listen
podcast_episode
Kevin Hu (Metaplane) , Tobias Macey

Summary Data observability is a set of technical and organizational capabilities related to understanding how your data is being processed and used so that you can proactively identify and fix errors in your workflows. In this episode Metaplane founder Kevin Hu shares his working definition of the term and explains the work that he and his team are doing to cut down on the time to adoption for this new set of practices. He discusses the factors that influenced his decision to start with the data warehouse, the potential shortcomings of that approach, and where he plans to go from there. This is a great exploration of what it means to treat your data platform as a living system and apply state of the art engineering to it.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Kevin Hu about Metaplane, a platform aiming to provide observability for modern data stacks, from warehouses to BI dashboards and everything in between.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metaplane is and the story behind it? Data observability is an area that has seen a huge amount of activity over the past couple of years. What is your working definition of that term?

What are the areas of differentiation that you see across vendors in the space?

Can you describe how the Metaplane platform is architected?

How have the design and goals of Metaplane changed or evolved since you started working on it?

establishing seasonality in data metrics blind spots from operating at the level of the data warehouse What are the most interesting, innovative, or unexpected ways that you have seen Metaplane used? What are the most interesti

Creating Shared Context For Your Data Warehouse With A Controlled Vocabulary

2022-01-02 Listen
podcast_episode

Summary Communication and shared context are the hardest part of any data system. In recent years the focus has been on data catalogs as the means for documenting data assets, but those introduce a secondary system of record in order to find the necessary information. In this episode Emily Riederer shares her work to create a controlled vocabulary for managing the semantic elements of the data managed by her team and encoding it in the schema definitions in her data warehouse. She also explains how she created the dbtplyr package to simplify the work of creating and enforcing your own controlled vocabularies.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Emily Riederer about defining and enforcing column contracts and controlled vocabularies for your data warehouse

Interview

Introduction How did you get involved in the area of data management? Can you start by discussing some of the anti-patterns that you have encountered in data warehouse naming conventions and how it relates to the modeling approach? (e.g. star/snowflake schema, data vault, etc.) What are some of the types of contracts that can, and should, be defined and enforced in data workflows?

What are the boundaries where we should think about establishing those contracts?

What is the utility of column and table names for defining and enforcing contracts in analytical work? What is the process for establishing contractual elements in a naming schema?

Who should be involved in that design process? Who are the participants in the communication paths for column naming contracts?

What are some examples of context and details that can’t be captured in column names?

What are some options for managing that additional information and linking it to the naming cont

A Reflection On The Data Ecosystem For The Year 2021

2022-01-02 Listen
podcast_episode
David Wallace (Good Eggs) , Gleb Mezhanskiy (Datafold) , Benn Stancil (ThoughtSpot) , Maura Church (Patreon) , Tobias Macey

Summary This has been an active year for the data ecosystem, with a number of new product categories and substantial growth in existing areas. In an attempt to capture the zeitgeist Maura Church, David Wallace, Benn Stancil, and Gleb Mezhanskiy join the show to reflect on the past year and share their thought son the year to come.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Maura Church, David Wallace, Benn Stancil, and Gleb Mezhanskiy about the key themes of 2021 in the data ecosystem and what to expect for next year

Interview

Introduction

How did you get involved in the area of data management?

What were the main themes that you saw data practitioners and vendors focused on this year?

What is the major bottleneck for Data teams in 2021? Will it be the same in 2022? One of the ways to reason about progress in any domain is to look at what was the primary bottleneck of further progress (data adoption for decision making) at different points in time. In the data domain, we have seen a number of bottlenecks, for example, scaling data platforms, the answer to which was Hadoop and on-prem columnar stores and then cloud data warehouses such as Snowflake & BigQuery. Then the problem was data integration and transformation which was solved by data integration vendors and frameworks such as Fivetran / Airbyte, modern orchestration frameworks such as Dagster & dbt and “reverse-ETL” Hightouch. What is the main challenge now?

Will SQL be challenged as a primary interface to analytical data? In 2020 we’ve seen a few launches of post-SQL languages such as Malloy, Preql, metric layer query languages from Transform and Supergrain.

To what extent does speed matter? Over the past

Exploring The Evolving Role Of Data Engineers

2021-12-27 Listen
podcast_episode

Summary Data Engineering is still a relatively new field that is going through a continued evolution as new technologies are introduced and new requirements are understood. In this episode Maxime Beauchemin returns to revisit what it means to be a data engineer and how the role has changed over the past 5 years.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Maxime Beauchemin about the impacts that the evolution of the modern data stack has had on the role and responsibilities of data engineers

Interview

Introduction How did you get involved in the area of data management? What is your current working definition of a data engineer?

How has that definition changed since your article on the "rise of the data engineer" and episode 3 of this show about "defining data engineering"?

How has the growing availability of data infrastructure services shifted foundational skills and knowledge that are necessary to be effective?

How should a new/aspiring data engineer focus their time and energy to become effective?

One of the core themes in this current spate of technologies is "democratization of data". In your post on the downfall of the data engineer you called out the pressure on data engineers to maintain control with so many contributors with varying levels of skill and understanding. How well is the "modern data stack" balancing these concerns? An interesting impact of the growing usage of data is the constrained availability of data engineers. How do you see the effects of the job market on driving evolution of tooling and services? With the explosion of tools and services for working with data, a new problem has evolved of which ones to use for a given organization. What do you see as

Revisiting The Technical And Social Benefits Of The Data Mesh

2021-12-27 Listen
podcast_episode

Summary The data mesh is a thesis that was presented to address the technical and organizational challenges that businesses face in managing their analytical workflows at scale. Zhamak Dehghani introduced the concepts behind this architectural patterns in 2019, and since then it has been gaining popularity with many companies adopting some version of it in their systems. In this episode Zhamak re-joins the show to discuss the real world benefits that have been seen, the lessons that she has learned while working with her clients and the community, and her vision for the future of the data mesh.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m welcoming back Zhamak Dehghani to talk about her work on the data mesh book and the lessons learned over the past 2 years

Interview

Introduction How did you get involved in the area of data management? Can you start by giving a brief recap of the principles of the data mesh and the story behind it? How has your view of the principles of the data mesh changed since our conversation in July of 2019? What are some of the ways that your work on the data mesh book influenced your thinking on the practical elements of implementing a data mesh? What do you view as the as-yet-unknown elements of the technical and social design constructs that are needed for a sustainable data mesh implementation? In the opening of your book you state that "Data Mesh is a new approach in sourcing, managing, and accessing data for analytical use cases at scale". As with everything, scale is subjective, but what are some of the heuristics that you rely on for determining when a data mesh is an appropriate solution? What are some of the ways that data mesh concepts manifest at the boundaries of organizations? While the idea of federated access to data product quanta reduces the amount of coordination necessary at the organizational level, it raises the spectre of more complex logic required for consumers of multiple quanta. How can data mesh implementations mitigate the impact of this problem? What are some of the technical components that you have found to be best suited to the implementation of data elements within a mesh? What are the technological components that are still missing for a mesh-native data platform? How should an organization that wishes to implement a mesh style architecture think about the roles and skills that they will need on staff?

How can vendors factor into the solution?

What is the role of application developers in a data mesh ecosystem and how do they need to change their thinking around the interfaces that they provide in their products? What are the most interesting, innovative, or unexpected ways that you have seen data mesh principles used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data mesh implementations? When is a data mesh the wrong approach? What do you think the future of the data mesh will look like?

Contact Info

LinkedIn @zhamakd on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Data Engineering Podcast Data Mesh Interview Data Mesh Book Thoughtworks Expert Systems OpenLineage

Podcast Episode

Data Mesh Learning

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Fast And Flexible Headless Data Analytics With Cube.JS

2021-12-21 Listen
podcast_episode

Summary One of the perennial challenges of data analytics is having a consistent set of definitions, along with a flexible and performant API endpoint for querying them. In this episode Artom Keydunov and Pavel Tiunov share their work on Cube.js and the various ways that it is being used in the open source community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Artyom Keydunov and Pavel Tiunov about Cube.js a framework for building analytics APIs to power your applications and BI dashboards

Interview

Introduction How did you get involved in the area of data management? Can you describe what Cube is and the story behind it? What are the main use cases and platform architectures that you are focused on?

Who are the target personas that will be using and managing Cube.js?

The name comes from the concept of an OLAP cube. Can you discuss the applications of OLAP cubes and their role in the current state of the data ecosystem?

How does the idea of an OLAP cube compare to the recent focus on a dedicated metrics layer?

What are the pieces of a data platform that might be replaced by Cube.js? Can you describe the design and architecture of the Cube platform?

How has the focus and target use case for the Cube platform evolved since you first started working on it?

One of the perpetually hard problems in computer science is cache management. How have you approached that challenge in the pre-aggregation layer of the Cube framework? What is your overarching design philosophy for the API of the Cube system? Can you talk through the workflow of someone building a cube and querying it from a downstream system?

What do the iteration cycles look like as you go from initial proof of concept to a more sophisticated usage of Cube.js

Building A System Of Record For Your Organization's Data Ecosystem At Metaphor

2021-12-20 Listen
podcast_episode

Summary Building a well managed data ecosystem for your organization requires a holistic view of all of the producers, consumers, and processors of information. The team at Metaphor are building a fully connected metadata layer to provide both technical and social intelligence about your data. In this episode Pardhu Gunnam and Mars Lan explain how they have designed the architecture and user experience to allow everyone to collaborate on the data lifecycle and provide opportunities for automation and extensible workflows.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Pardhu Gunnam and Mars Lan about Metaphor Data, a platform aiming to be the system of record for your data ecosystem

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metaphor is and the story behind it? On your site it states that you are aiming to be the "system of record" for your data platform. Can you unpack that statement and its implications?

What are the shortcomings in the "data catalog" approach to metadata collection and presentation?

Who are the target end users of Metaphor and what are the pain points for each persona that you are prioritizing?

How has that focus informed your priorities for user experience design and feature development?

Can you describe how the Metaphor platform is architected?

What are the lessons that you learned from your work at DataHub that have informed your work on Metaphor?

There has been a huge amount of focus on the "modern data stack" with an assumption that there is a cloud data warehouse as the central component that all data flows through. How does Metaphor’s design allow for usage in platforms that aren’t dominated

Building Auditable Spark Pipelines At Capital One

2021-12-13 Listen
podcast_episode
Gokul Prabagaren (Capital One) , Tobias Macey

Summary Spark is a powerful and battle tested framework for building highly scalable data pipelines. Because of its proven ability to handle large volumes of data Capital One has invested in it for their business needs. In this episode Gokul Prabagaren shares his use for it in calculating your rewards points, including the auditing requirements and how he designed his pipeline to maintain all of the necessary information through a pattern of data enrichment.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Gokul Prabagaren about how he is using Spark for real-world workflows at Capital One

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the types of data and workflows that you are responsible for at Capital one?

In terms of the three "V"s (Volume, Variety, Velocity), what is the magnitude of the data that you are working with?

What are some of the business and regulatory requirements that have to be factored into the solutions that you design? Who are the consumers of the data assets that you are producing? Can you describe the technical elements of the platform that you use for managing your data pipelines? What are the various ways that you are using Spark at Capital One? You wrote a post and presented at the Databricks conference about your experience moving from a data filtering to a data enrichment pattern for segmenting transactions. Can you give some context as to the use case and what your design process was for the initial implementation?

What were the shortcomings to that approach/business requirements which led you to refactoring the approach to one that maintained all of the data through the different processing stages?

What are some of t

Deliver Personal Experiences In Your Applications With The Unomi Open Source Customer Data Platform

2021-12-12 Listen
podcast_episode

Summary The core to providing your users with excellent service is to understand them and provide a personalized experience. Unfortunately many sites and applications take that to the extreme and collect too much information. In order to make it easier for developers to build customer profiles in a way that respects their privacy Serge Huber helped to create the Apache Unomi framework as an open source customer data platform. In this episode he explains how it can be used to build rich and useful profiles of your users, the system architecture that powers it, and some of the ways that it is being integrated into an organization’s broader data ecosystem.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Serge Huber about Apache Unomi, an open source customer data platform designed to manage customers, leads and visitors data and help personalize customers experiences

Interview

Introduction How did you get involved in the area of data management? Can you describe what Unomi is and the story behind it? What are the goals and target use cases of Unomi? What are the aspects of collecting and aggregating profile information that present challenges to developers?

How does the design of Unomi reduce that burden?

How does the focus of Unomi compare to systems such as Segment/Rudderstack or Optimizely for collecting user interactions and applying personalization? How does Unomi fit in the architecture of an application or data infrastructure? Can you describe how Unomi itself is architected?

How have the goals and design of the project changed or evolved since it started? What are some of the most complex or challenging engineering projects that you have worked through?

Can you describe the wo

Data Driven Hiring For Data Professionals With Alooba

2021-12-04 Listen
podcast_episode

Summary Hiring data professionals is challenging for a multitude of reasons, and as with every interview process there is a potential for bias to creep in. Tim Freestone founded Alooba to provide a more stable reference point for evaluating candidates to ensure that you can make more informed comparisons based on their actual knowledge. In this episode he explains how Alooba got started, how it is being used in the interview process for data oriented roles, and how it can also provide visibility into your organizations overall data literacy. The whole process of hiring is an important organizational skill to cultivate and this is an interesting exploration of the specific challenges involved in finding data professionals.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Tim Freestone about Alooba, an assessment platform for evaluating data and analytics candidates to improve hiring outcomes for data roles.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Alooba is and the story behind it? What are the main goals that you are trying to achieve with Alooba? What are the main challenges that employers and candidates face when navigating their respective roles in the hiring process?

What are some of the difficulties that are specific to data oriented roles?

What are some of the complexities involved in designing a user experience that is positive and productive for both candidates and companies? What are some strategies that you have developed for establishing a fair and consistent baseline of skills to ensure consistent comparison across candidates? One of the problems that comes from test-based skills assessment is the implicit bias towa

Experimentation and A/B Testing For Modern Data Teams With Eppo

2021-12-04 Listen
podcast_episode

Summary A/B testing and experimentation are the most reliable way to determine whether a change to your product will have the desired effect on your business. Unfortunately, being able to design, deploy, and validate experiments is a complex process that requires a mix of technical capacity and organizational involvement which is hard to come by. Chetan Sharma founded Eppo to provide a system that organizations of every scale can use to reduce the burden of managing experiments so that you can focus on improving your business. In this episode he digs into the technical, statistical, and design requirements for running effective experiments and how he has architected the Eppo platform to make the process more accessible to business and data professionals.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Chetan Sharma about Eppo, a platform for building A/B experiments that are easier to manage

Interview

Introduction How did you get involved in the area of data management? Can you describe what Eppo is and the story behind it? What are some examples of the kinds of experiments that teams and organizations might want to conduct? What are the points of friction that What are the steps involved in designing, deploying, and analyzing the outcomes of an A/B experiment?

What are some of the statistical errors that are common when conducting an experiment?

What are the design and UX principles that you have focused on in Eppo to improve the workflow of building and analyzing experiments? Can you describe the system design of the Eppo platform?

What are the services or capabilities external to Eppo that are required for it to be effective? What are the integration points for adding Eppo to an organization’s existing platform?

B

Creating A Unified Experience For The Modern Data Stack At Mozart Data

2021-11-27 Listen
podcast_episode
Peter Fishman (Mozart Data) , Dan Silberman (Mozart Data) , Tobias Macey

Summary The modern data stack has been gaining a lot of attention recently with a rapidly growing set of managed services for different stages of the data lifecycle. With all of the available options it is possible to run a scalable, production grade data platform with a small team, but there are still sharp edges and integration challenges to work through. Peter Fishman and Dan Silberman experienced these difficulties firsthand and created Mozart Data to provide a single, easy to use option for getting started with the modern data stack. In this episode they explain how they designed a user experience to make working with data more accessibly by organizations without a data team, while allowing for more advanced users to build out more complex workflows. They also share their thoughts on the modern data ecosystem and how it improves the availability of analytics for companies of all sizes.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Peter Fishman and Dan Silberman about Mozart Data and how they are building a unified experience for the modern data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Mozart Data is and the story behind it? The promise of the "modern data stack" is that it’s all delivered as a service to make it easier to set up. What are the missing pieces that make something like Mozart necessary? What are the main workflows or industries that you are focusing on? Who are the main personas that you are building Mozart for?

How has that combination of user persona and industry focus informed your decisions around feature priorities and user experience?

Can you describe how you have architected the Mozart platform?

How have you approached the bu

Doing DataOps For External Data Sources As A Service at Demyst

2021-11-27 Listen
podcast_episode

Summary The data that you have access to affects the questions that you can answer. By using external data sources you can drastically increase the range of analysis that is available to your organization. The challenge comes in all of the operational aspects of finding, accessing, organizing, and serving that data. In this episode Mark Hookey discusses how he and his team at Demyst do all of the DataOps for external data sources so that you don’t have to, including the systems necessary to organize and catalog the various collections that they host, the various serving layers to provide query interfaces that match your platform, and the utility of having a single place to access a multitude of information. If you are having trouble answering questions for your business with the data that you generate and collect internally, then it is definitely worthwhile to explore the information available from external sources.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Mark Hookey about Demyst Data, a platform for operationalizing external data

Interview

Introduction How did you get involved in the area of data management? Can you describe what Demyst is and the story behind it?

What are the services and systems that you provide for organizations to incorporate external sources in their data workflows? Who are your target customers?

What are some examples of data sets that an organization might want to use in their analytics?

How are these different from SaaS data that an organization might integrate with tools such as Stitcher and Fivetran?

What are some of the challenges that are introduced by working with these external data sets?

If an organization isn’t using Demyst what are some

Exploring Processing Patterns For Streaming Data Integration In Your Data Lake

2021-11-20 Listen
podcast_episode
Ori Rafael (Upsolver) , Tobias Macey

Summary One of the perennial challenges posed by data lakes is how to keep them up to date as new data is collected. With the improvements in streaming engines it is now possible to perform all of your data integration in near real time, but it can be challenging to understand the proper processing patterns to make that performant. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Ori Rafael about strategies for building stream and batch processing patterns for data lake analytics

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the state of the market for data lakes today?

What are the prevailing architectural and technological patterns that are being used to manage these systems?

Batch and streaming systems have been used in various combinations since the early days of Hadoop. The Lambda architecture has largely been abandoned, so what is the answer for today’s data lakes? What are the challenges presented by streaming approaches to data transformations?

The batch model for processing is intuitive despite its latency problems. What are the benefits that it provides?

The core concept for data orchestration is the DAG. How does that manifest in a streaming context? In batch processing idempotent/immutable datasets are created by re-running the entire pipeline when logic changes need to be made. Given that there is no definitive start or end of a stream, what are the options for amending logical errors in transformations? What are some of the da

Laying The Foundation Of Your Data Platform For The Era Of Big Complexity With Dagster

2021-11-20 Listen
podcast_episode

Summary The technology for scaling storage and processing of data has gone through massive evolution over the past decade, leaving us with the ability to work with massive datasets at the cost of massive complexity. Nick Schrock created the Dagster framework to help tame that complexity and scale the organizational capacity for working with data. In this episode he shares the journey that he and his team at Elementl have taken to understand the state of the ecosystem and how they can provide a foundational layer for a holistic data platform.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform and blazing fast NVMe storage there’s nothing slowing you down. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Nick Schrock about the evolution of Dagster and its path forward

Interview

Introduction How did you get involved in the area of data management? Can you describe what Dagster is and the story behind it? How has the project and community changed/evolved since we last spoke 2 years ago?

How has the experience of the past 2 years clarified the challenges and opportunities that exist in the data ecosystem?

What do you see as the foundational vs transient complexities that are germane to the industry?

One of the emerging ideas in Dagster is the "software defined data asset" as the central entity in the framework. How has that shifted the way that engineers approach pipeline design and composition?

How did that conceptual shift inform the accompanying refactor of the core principles in the framework? (jobs, ops, graphs)

One of the powerful elements of the Dagster framework is the investment in rich metadata as a foundational principle. What are the opportunities for integrating and extending that context throughout the rest of an organizations data platform?

What do you see as the potential for efforts such as OpenLineage and OpenMetadata to allow for other compone

Data Quality Starts At The Source

2021-11-14 Listen
podcast_episode

Summary The most important gauge of success for a data platform is the level of trust in the accuracy of the information that it provides. In order to build and maintain that trust it is necessary to invest in defining, monitoring, and enforcing data quality metrics. In this episode Michael Harper advocates for proactive data quality and starting with the source, rather than being reactive and having to work backwards from when a problem is found.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Michael Harper about definitions of data quality and where to define and enforce it in the data platform

Interview

Introduction How did you get involved in the area of data management? What is your definition for the term "data quality" and what are the implied goals that it embodies?

What are some ways that different stakeholders and participants in the data lifecycle might disagree about the definitions and manifestations of data quality?

The market for "data quality tools" has been growing and gaining attention recently. How would you categorize the different approaches taken by open source and commercial options in the ecosystem?

What are the tradeoffs that you see in each approach? (e.g. data warehouse as a chokepoint vs quality checks on extract)

What are the difficulties that engineers and stakeholders encounter when identifying and defining information that is necessary to identify issues in their workflows? Can you describe some examples of adding data quality checks to the beginning stages of a data workflow and the kinds of issues that can be identified?

What are some ways that quality and observability metrics can be aggregated across multiple pipeline stages to identify more complex issues?

In application observa

Eliminate Friction In Your Data Platform Through Unified Metadata Using OpenMetadata

2021-11-10 Listen
podcast_episode
Suresh Srinivas (OpenMetadata) , Sriharsha Chintalapani (OpenMetadata) , Tobias Macey

Summary A significant source of friction and wasted effort in building and integrating data management systems is the fragmentation of metadata across various tools. After experiencing the impacts of fragmented metadata and previous attempts at building a solution Suresh Srinivas and Sriharsha Chintalapani created the OpenMetadata project. In this episode they share the lessons that they have learned through their previous attempts and the positive impact that a unified metadata layer had during their time at Uber. They also explain how the OpenMetadat project is aiming to be a common standard for defining and storing metadata for every use case in data platforms and the ways that they are architecting the reference implementation to simplify its adoption. This is an ambitious and exciting project, so listen and try it out today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Sriharsha Chintalapani and Suresh Srinivas about OpenMetadata, an open standard for metadata and a reference implementation for a central metadata store

Interview

Introduction How did you get involved in the area of data management? Can you describe what the OpenMetadata project is and the story behind it?

What are the goals of the project?

What are the common challenges faced by engineers and data practitioners in organizing the metadata for their systems? What are the capabilities that a centralized and holis