talk-data.com talk-data.com

Event

Data Engineering Podcast

2017-01-08 – 2025-11-24 Podcasts Visit website ↗

Activities tracked

233

This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Filtering by: SQL ×

Sessions & talks

Showing 226–233 of 233 · Newest first

Search within this event →

User Analytics In Depth At Heap with Dan Robinson - Episode 36

2018-06-17 Listen
podcast_episode

Summary

Web and mobile analytics are an important part of any business, and difficult to get right. The most frustrating part is when you realize that you haven’t been tracking a key interaction, having to write custom logic to add that event, and then waiting to collect data. Heap is a platform that automatically tracks every event so that you can retroactively decide which actions are important to your business and easily build reports with or without SQL. In this episode Dan Robinson, CTO of Heap, describes how they have architected their data infrastructure, how they build their tracking agents, and the data virtualization layer that enables users to define their own labels.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Dan Robinson about Heap and their approach to collecting, storing, and analyzing large volumes of data

Interview

Introduction How did you get involved in the area of data management? Can you start by giving a brief overview of Heap? One of your differentiating features is the fact that you capture every interaction on web and mobile platforms for your customers. How do you prevent the user experience from suffering as a result of network congestion, while ensuring the reliable delivery of that data? Can you walk through the lifecycle of a single event from source to destination and the infrastructure components that it traverses to get there? Data collected in a user’s browser can often be messy due to various browser plugins, variations in runtime capabilities, etc. How do you ensure the integrity and accuracy of that information?

What are some of the difficulties that you have faced in establishing a representation of events that allows for uniform processing and storage?

What is your approach for merging and enriching event data with the information that you retrieve from your supported integrations?

What challenges does that pose in your processing architecture?

What are some of the problems that you have had to deal with to allow for processing and storing such large volumes of data?

How has that architecture changed or evolved over the life of the company? What are some changes that you are anticipating in the near future?

Can you describe your approach for synchronizing customer data with their individual Redshift instances and the difficulties that entails? What are some of the most interesting challenges that you have faced while building the technical and business aspects of Heap? What changes have been necessary as a result of GDPR? What are your plans for the future of Heap?

Contact Info

@danlovesproofs on twitter [email protected] @drob on github heapanalytics.com / @heap on twitter https://heapanalytics.com/blog/category/engineering?utm_source=rss&utm_medium=rss

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data manageme

CockroachDB In Depth with Peter Mattis - Episode 35

2018-06-11 Listen
podcast_episode
Peter Mattis (Cockroach Labs) , Tobias Macey

Summary

With the increased ease of gaining access to servers in data centers across the world has come the need for supporting globally distributed data storage. With the first wave of cloud era databases the ability to replicate information geographically came at the expense of transactions and familiar query languages. To address these shortcomings the engineers at Cockroach Labs have built a globally distributed SQL database with full ACID semantics in Cockroach DB. In this episode Peter Mattis, the co-founder and VP of Engineering at Cockroach Labs, describes the architecture that underlies the database, the challenges they have faced along the way, and the ways that you can use it in your own environments today.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Peter Mattis about CockroachDB, the SQL database for global cloud services

Interview

Introduction How did you get involved in the area of data management? What was the motivation for creating CockroachDB and building a business around it? Can you describe the architecture of CockroachDB and how it supports distributed ACID transactions?

What are some of the tradeoffs that are necessary to allow for georeplicated data with distributed transactions? What are some of the problems that you have had to work around in the RAFT protocol to provide reliable operation of the clustering mechanism?

Go is an unconventional language for building a database. What are the pros and cons of that choice? What are some of the common points of confusion that users of CockroachDB have when operating or interacting with it?

What are the edge cases and failure modes that users should be aware of?

I know that your SQL syntax is PostGreSQL compatible, so is it possible to use existing ORMs unmodified with CockroachDB?

What are some examples of extensions that are specific to CockroachDB?

What are some of the most interesting uses of CockroachDB that you have seen? When is CockroachDB the wrong choice? What do you have planned for the future of CockroachDB?

Contact Info

Peter

LinkedIn petermattis on GitHub @petermattis on Twitter

Cockroach Labs

@CockroackDB on Twitter Website cockroachdb on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

CockroachDB Cockroach Labs SQL Google Bigtable Spanner NoSQL RDBMS (Relational Database Management System) “Big Iron” (colloquial term for mainframe computers) RAFT Consensus Algorithm Consensus MVCC (Multiversion Concurrency Control) Isolation Etcd GDPR Golang C++ Garbage Collection Metaprogramming Rust Static Linking Docker Kubernetes CAP Theorem PostGreSQL ORM (Object Relational Mapping) Information Schema PG Catalog Interleaved Tables Vertica Spark Change Data Capture

The intro and outro music is from The Hug by The Freak Fandan

PrestoDB and Starburst Data with Kamil Bajda-Pawlikowski - Episode 32

2018-05-21 Listen
podcast_episode

Summary

Most businesses end up with data in a myriad of places with varying levels of structure. This makes it difficult to gain insights from across departments, projects, or people. Presto is a distributed SQL engine that allows you to tie all of your information together without having to first aggregate it all into a data warehouse. Kamil Bajda-Pawlikowski co-founded Starburst Data to provide support and tooling for Presto, as well as contributing advanced features back to the project. In this episode he describes how Presto is architected, how you can use it for your analytics, and the work that he is doing at Starburst Data.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Kamil Bajda-Pawlikowski about Presto and his experiences with supporting it at Starburst Data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Presto is?

What are some of the common use cases and deployment patterns for Presto?

How does Presto compare to Drill or Impala? What is it about Presto that led you to building a business around it? What are some of the most challenging aspects of running and scaling Presto? For someone who is using the Presto SQL interface, what are some of the considerations that they should keep in mind to avoid writing poorly performing queries?

How does Presto represent data for translating between its SQL dialect and the API of the data stores that it interfaces with?

What are some cases in which Presto is not the right solution? What types of support have you found to be the most commonly requested? What are some of the types of tooling or improvements that you have made to Presto in your distribution?

What are some of the notable changes that your team has contributed upstream to Presto?

Contact Info

Website E-mail Twitter – @starburstdata Twitter – @prestodb

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Starburst Data Presto Hadapt Hadoop Hive Teradata PrestoCare Cost Based Optimizer ANSI SQL Spill To Disk Tempto Benchto Geospatial Functions Cassandra Accumulo Kafka Redis PostGreSQL

The intro and outro music is from The Hug by The Freak Fandango Orchestra / {CC BY-SA](http://creativecommons.org/licenses/by-sa/3.0/)?utm_source=rss&utm_medium=rss Support Data Engineering Podcast

Metabase Self Service Business Intelligence with Sameer Al-Sakran - Episode 29

2018-04-30 Listen
podcast_episode

Summary

Business Intelligence software is often cumbersome and requires specialized knowledge of the tools and data to be able to ask and answer questions about the state of the organization. Metabase is a tool built with the goal of making the act of discovering information and asking questions of an organizations data easy and self-service for non-technical users. In this episode the CEO of Metabase, Sameer Al-Sakran, discusses how and why the project got started, the ways that it can be used to build and share useful reports, some of the useful features planned for future releases, and how to get it set up to start using it in your environment.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Sameer Al-Sakran about Metabase, a free and open source tool for self service business intelligence

Interview

Introduction How did you get involved in the area of data management? The current goal for most companies is to be “data driven”. How would you define that concept?

How does Metabase assist in that endeavor?

What is the ratio of users that take advantage of the GUI query builder as opposed to writing raw SQL?

What level of complexity is possible with the query builder?

What have you found to be the typical use cases for Metabase in the context of an organization? How do you manage scaling for large or complex queries? What was the motivation for using Clojure as the language for implementing Metabase? What is involved in adding support for a new data source? What are the differentiating features of Metabase that would lead someone to choose it for their organization? What have been the most challenging aspects of building and growing Metabase, both from a technical and business perspective? What do you have planned for the future of Metabase?

Contact Info

Sameer

salsakran on GitHub @sameer_alsakran on Twitter LinkedIn

Metabase

Website @metabase on Twitter metabase on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Expa Metabase Blackjet Hadoop Imeem Maslow’s Hierarchy of Data Needs 2 Sided Marketplace Honeycomb Interview Excel Tableau Go-JEK Clojure React Python Scala JVM Redash How To Lie With Data Stripe Braintree Payments

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Octopai: Metadata Management for Better Business Intelligence with Amnon Drori - Episode 28

2018-04-23 Listen
podcast_episode

Summary

The information about how data is acquired and processed is often as important as the data itself. For this reason metadata management systems are built to track the journey of your business data to aid in analysis, presentation, and compliance. These systems are frequently cumbersome and difficult to maintain, so Octopai was founded to alleviate that burden. In this episode Amnon Drori, CEO and co-founder of Octopai, discusses the business problems he witnessed that led him to starting the company, how their systems are able to provide valuable tools and insights, and the direction that their product will be taking in the future.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 200Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Amnon Drori about OctopAI and the benefits of metadata management

Interview

Introduction How did you get involved in the area of data management? What is OctopAI and what was your motivation for founding it? What are some of the types of information that you classify and collect as metadata? Can you talk through the architecture of your platform? What are some of the challenges that are typically faced by metadata management systems? What is involved in deploying your metadata collection agents? Once the metadata has been collected what are some of the ways in which it can be used? What mechanisms do you use to ensure that customer data is segregated?

How do you identify and handle sensitive information during the collection step?

What are some of the most challenging aspects of your technical and business platforms that you have faced? What are some of the plans that you have for OctopAI going forward?

Contact Info

Amnon

LinkedIn @octopai_amnon on Twitter

OctopAI

@OctopaiBI on Twitter Website

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

OctopAI Metadata Metadata Management Data Integrity CRM (Customer Relationship Management) ERP (Enterprise Resource Planning) Business Intelligence ETL (Extract, Transform, Load) Informatica SAP Data Governance SSIS (SQL Server Integration Services) Vertica Airflow Luigi Oozie GDPR (General Data Privacy Regulation) Root Cause Analysis

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

TimescaleDB: Fast And Scalable Timeseries with Ajay Kulkarni and Mike Freedman - Episode 18

2018-02-11 Listen
podcast_episode
Mike Freedman (Timescale) , Ajay Kulkarni (Timescale) , Tobias Macey

Summary

As communications between machines become more commonplace the need to store the generated data in a time-oriented manner increases. The market for timeseries data stores has many contenders, but they are not all built to solve the same problems or to scale in the same manner. In this episode the founders of TimescaleDB, Ajay Kulkarni and Mike Freedman, discuss how Timescale was started, the problems that it solves, and how it works under the covers. They also explain how you can start using it in your infrastructure and their plans for the future.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ajay Kulkarni and Mike Freedman about Timescale DB, a scalable timeseries database built on top of PostGreSQL

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Timescale is and how the project got started? The landscape of time series databases is extensive and oftentimes difficult to navigate. How do you view your position in that market and what makes Timescale stand out from the other options? In your blog post that explains the design decisions for how Timescale is implemented you call out the fact that the inserted data is largely append only which simplifies the index management. How does Timescale handle out of order timestamps, such as from infrequently connected sensors or mobile devices? How is Timescale implemented and how has the internal architecture evolved since you first started working on it?

What impact has the 10.0 release of PostGreSQL had on the design of the project? Is timescale compatible with systems such as Amazon RDS or Google Cloud SQL?

For someone who wants to start using Timescale what is involved in deploying and maintaining it? What are the axes for scaling Timescale and what are the points where that scalability breaks down?

Are you aware of anyone who has deployed it on top of Citus for scaling horizontally across instances?

What has been the most challenging aspect of building and marketing Timescale? When is Timescale the wrong tool to use for time series data? One of the use cases that you call out on your website is for systems metrics and monitoring. How does Timescale fit into that ecosystem and can it be used along with tools such as Graphite or Prometheus? What are some of the most interesting uses of Timescale that you have seen? Which came first, Timescale the business or Timescale the database, and what is your strategy for ensuring that the open source project and the company around it both maintain their health? What features or improvements do you have planned for future releases of Timescale?

Contact Info

Ajay

LinkedIn @acoustik on Twitter Timescale Blog

Mike

Website LinkedIn @michaelfreedman on Twitter Timescale Blog

Timescale

Website @timescaledb on Twitter GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Timescale PostGreSQL Citus Timescale Design Blog Post MIT NYU Stanford SDN Princeton Machine Data Timeseries Data List of Timeseries Databases NoSQL Online Transaction Processing (OLTP) Object Relational Mapper (ORM) Grafana Tableau Kafka When Boring Is Awesome PostGreSQL RDS Google Cloud SQL Azure DB Docker Continuous Aggregates Streaming Replication PGPool II Kubernetes Docker Swarm Citus Data

Website Data Engineering Podcast Interview

Database Indexing B-Tree Index GIN Index GIST Index STE Energy Redis Graphite Prometheus pg_prometheus OpenMetrics Standard Proposal Timescale Parallel Copy Hadoop PostGIS KDB+ DevOps Internet of Things MongoDB Elastic DataBricks Apache Spark Confluent New Enterprise Associates MapD Benchmark Ventures Hortonworks 2σ Ventures CockroachDB Cloudflare EMC Timescale Blog: Why SQL is beating NoSQL, and what this means for the future of data

The intro and outro music is from a href="http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug?utm_source=rss&utm_medium=rss" target="_blank"…

Citus Data: Distributed PostGreSQL for Big Data with Ozgun Erdogan and Craig Kerstiens - Episode 13

2018-01-08 Listen
podcast_episode
Ozgun Erdogan (Citus Data) , Craig Kerstiens (Citus Data) , Tobias Macey

Summary

PostGreSQL has become one of the most popular and widely used databases, and for good reason. The level of extensibility that it supports has allowed it to be used in virtually every environment. At Citus Data they have built an extension to support running it in a distributed fashion across large volumes of data with parallelized queries for improved performance. In this episode Ozgun Erdogan, the CTO of Citus, and Craig Kerstiens, Citus Product Manager, discuss how the company got started, the work that they are doing to scale out PostGreSQL, and how you can start using it in your environment.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ozgun Erdogan and Craig Kerstiens about Citus, worry free PostGreSQL

Interview

Introduction How did you get involved in the area of data management? Can you describe what Citus is and how the project got started? Why did you start with Postgres vs. building something from the ground up? What was the reasoning behind converting Citus from a fork of PostGres to being an extension and releasing an open source version? How well does Citus work with other Postgres extensions, such as PostGIS, PipelineDB, or Timescale? How does Citus compare to options such as PostGres-XL or the Postgres compatible Aurora service from Amazon? How does Citus operate under the covers to enable clustering and replication across multiple hosts? What are the failure modes of Citus and how does it handle loss of nodes in the cluster? For someone who is interested in migrating to Citus, what is involved in getting it deployed and moving the data out of an existing system? How do the different options for leveraging Citus compare to each other and how do you determine which features to release or withhold in the open source version? Are there any use cases that Citus enables which would be impractical to attempt in native Postgres? What have been some of the most challenging aspects of building the Citus extension? What are the situations where you would advise against using Citus? What are some of the most interesting or impressive uses of Citus that you have seen? What are some of the features that you have planned for future releases of Citus?

Contact Info

Citus Data

citusdata.com @citusdata on Twitter citusdata on GitHub

Craig

Email Website @craigkerstiens on Twitter

Ozgun

Email ozgune on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Citus Data PostGreSQL NoSQL Timescale SQL blog post PostGIS PostGreSQL Graph Database JSONB Data Type PipelineDB Timescale PostGres-XL Aurora PostGres Amazon RDS Streaming Replication CitusMX CTE (Common Table Expression) HipMunk Citus Sharding Blog Post Wal-e Wal-g Heap Analytics HyperLogLog C-Store

The intro and outro musi

Data Serialization Formats with Doug Cutting and Julien Le Dem - Episode 8

2017-11-22 Listen
podcast_episode

Summary With the wealth of formats for sending and storing data it can be difficult to determine which one to use. In this episode Doug Cutting, creator of Avro, and Julien Le Dem, creator of Parquet, dig into the different classes of serialization formats, what their strengths are, and how to choose one for your workload. They also discuss the role of Arrow as a mechanism for in-memory data sharing and how hardware evolution will influence the state of the art for data formats.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Julien Le Dem and Doug Cutting about data serialization formats and how to pick the right one for your systems.

Interview

Introduction How did you first get involved in the area of data management? What are the main serialization formats used for data storage and analysis? What are the tradeoffs that are offered by the different formats? How have the different storage and analysis tools influenced the types of storage formats that are available? You’ve each developed a new on-disk data format, Avro and Parquet respectively. What were your motivations for investing that time and effort? Why is it important for data engineers to carefully consider the format in which they transfer their data between systems?

What are the switching costs involved in moving from one format to another after you have started using it in a production system?

What are some of the new or upcoming formats that you are each excited about? How do you anticipate the evolving hardware, patterns, and tools for processing data to influence the types of storage formats that maintain or grow their popularity?

Contact Information

Doug:

cutting on GitHub Blog @cutting on Twitter

Julien

Email @J_ on Twitter Blog julienledem on GitHub

Links

Apache Avro Apache Parquet Apache Arrow Hadoop Apache Pig Xerox Parc Excite Nutch Vertica Dremel White Paper

Twitter Blog on Release of Parquet

CSV XML Hive Impala Presto Spark SQL Brotli ZStandard Apache Drill Trevni Apache Calcite

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast