talk-data.com
People (356 results)
See all 356 →Activities & events
| Title & Speakers | Event |
|---|---|
|
HumanTalks Paris Avril 2024
2024-04-09 · 17:00
Bonjour à toutes et à tous ! Ce mois-ci nous remercions Carbon de nous accueillir dans leurs locaux ! Voici le programme de la soirée: - Accueil: à partir de 19h - Présentation: 19h20 - Talks: 19h30 - 20h30 (4 talks de 10min + 5min de Q&A par talk) - Buffet networking: 20h30 Voici la liste des talks :
L'identité est considérée comme le pivot de la sécurité du SI d'une entreprise. L'authentification des utilisateurs (clients finaux ou employés) est un process critique pour l'accès aux ressources de l'entreprise. Cette authentification est aujourd'hui souvent centralisée autour de l'utilisation d'un mot de passe. Le Passwordless promet de résoudre les problématiques liées au mot de passe (phishing, brute force, ...) en augmentant le niveau de sécurité de l'authentification tout en améliorant l'expérience utilisateur. FIDO2, CTAP, WebAuthn, U2F ou encore Passkey, le lexique technique de l’écosystème Passwordless est riche. Dans ce contexte, les prototypes et projets de déploiement Passwordless se multiplient au sein des grandes entreprises. L'objectif de ce talk est de faire une introduction sur les concepts et technologies autour du Passwordless, leurs avantages et leurs limites. Une démonstration d'une authentification passwordless pourra également être effectuée.
Le TDD est une pratique grandement reconnue, mais peu répandue. Pourquoi ? Alors que les bénéfices sont nombreux et l'engouement est palpable, nombreuses sont les idées reçues autour de la pratique du TDD qui freinent son application en entreprise. Dans ce talk, j'en explore quelques-unes, issues de mon expérience personnelle, de celle de mes collègues, ainsi que de voix célèbres dans la communauté, et je propose des actions pour les combattre, et qu'on réussisse enfin à nous y mettre !
Comment un ingénieur qui debug des puces hardware dans l’industrie américaine des années 80 peut nous apprendre à mieux debugger une application web moderne ? En parlant de sa voiture, de sa tondeuse ou d’un micro processeur David Agans nous fait entrevoir en quoi le debugging est universel. En quoi une feuille de route claire permet d’éviter le plus gros du gâchis dans le debugging. Et finalement en quoi l’industrie tech bénéficie de plus d’outils que lui n’en avait à son époque. Au cours de ce talk découvrez :
-
Qu’est-ce que l’inversion de contrôle et quels sont ses mécanismes ? Vous l’utilisez tous les jours, mais vous êtes-vous déjà demandé comment cela fonctionnait ? À travers ce talk vous découvrirez :
--- Tu veux faire un talk sur un sujet tech qui te tient à cœur, lors d'un prochain meetup HumanTalks ? N'hésites pas à soumettre ton talk ici: https://gospeak.io/cfps/humantalks-paris Nous avons à cœur de permettre aux personnes qui n'ont pas l'habitude de prendre la parole de venir présenter un sujet. Nous proposons un accompagnement aux personnes qui en ressentiraient le besoin ! Sentez-vous donc libre de venir proposez un sujet ;) --- Pour voir nos sessions précédentes, rendez-vous sur notre chaîne YouTube: https://www.youtube.com/@HumanTalksParis/videos |
HumanTalks Paris Avril 2024
|
|
nPlan's ML Paper Club
2024-02-15 · 12:30
This week Peter will present ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation by Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Julius Busecke · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Tian Zheng · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Mike Pritchard. We look forward to seeing you there! Want to know more Paper Club?
|
nPlan's ML Paper Club
|
|
Building massive scale analytics with Dr. David Bader
2022-10-06 · 05:00
Jason Foster
– guest
,
David Bader
– guest
In this episode, Jason Foster talks to David Bader, Distinguished Professor of the Department of Data Science at the New Jersey Institute of Technology. They talk about building massive scale analytics, how to use a large amount of data to gain insights, the complexity of the data set and how to bridge the gap between architecture and algorithms. David also shares his notable experience, talks about capabilities and skills data departments require to run large-scale data projects and explores some use cases in diverse industries. |
Hub & Spoken: Data | Analytics | Chief Data Officer | CDO | Data Strategy |
|
Leading Data Research - David Bader
2022-09-16 · 17:00
David A. Bader
– Professor
@ New Jersey Institute of Technology (NJIT)
We talked about: David’s background A day in the life of a professor David’s current projects Starting a school The different types of professors David’s recent papers Similarities and differences between research labs and startups Finding (or creating) good datasets David’s lab Balancing research and teaching as a professor David’s most rewarding research project David’s most underrated research project David’s virtual data science seminars on YouTube Teaching at universities without doing research Staying up-to-date in research David’s favorite conferences Selecting topics for research Convincing students to stay in academia and competing with industry Finding David online Links: David A. Bader: https://davidbader.net/ NJIT Institute for Data Science: https://datascience.njit.edu/ Arkouda: https://github.com/Bears-R-Us/arkouda NJIT Data Science YouTube Channel: https://www.youtube.com/c/NJITInstituteforDataScience ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html |
DataTalks.Club |
|
David Bader
– guest
,
Tobias Macey
– host
Summary Exploratory data analysis works best when the feedback loop is fast and iterative. This is easy to achieve when you are working on small datasets, but as they scale up beyond what can fit on a single machine those short iterations quickly become long and tedious. The Arkouda project is a Python interface built on top of the Chapel compiler to bring back those interactive speeds for exploratory analysis on horizontally scalable compute that parallelizes operations on large volumes of data. In this episode David Bader explains how the framework operates, the algorithms that are built into it to support complex analyses, and how you can start using it today. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Data stacks are becoming more and more complex. This brings infinite possibilities for data pipelines to break and a host of other issues, severely deteriorating the quality of the data and causing teams to lose trust. Sifflet solves this problem by acting as an overseeing layer to the data stack – observing data and ensuring it’s reliable from ingestion all the way to consumption. Whether the data is in transit or at rest, Sifflet can detect data quality anomalies, assess business impact, identify the root cause, and alert data teams’ on their preferred channels. All thanks to 50+ quality checks, extensive column-level lineage, and 20+ connectors across the Data Stack. In addition, data discovery is made easy through Sifflet’s information-rich data catalog with a powerful search engine and real-time health statuses. Listeners of the podcast will get $2000 to use as platform credits when signing up to use Sifflet. Sifflet also offers a 2-week free trial. Find out more at dataengineeringpodcast.com/sifflet today! RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodc |
Data Engineering Podcast |