talk-data.com
People (5 results)
See all 5 →Activities & events
| Title & Speakers | Event |
|---|---|
|
DuckDB in Action
2024-08-21
Dive into DuckDB and start processing gigabytes of data with ease—all with no data warehouse. DuckDB is a cutting-edge SQL database that makes it incredibly easy to analyze big data sets right from your laptop. In DuckDB in Action you’ll learn everything you need to know to get the most out of this awesome tool, keep your data secure on prem, and save you hundreds on your cloud bill. From data ingestion to advanced data pipelines, you’ll learn everything you need to get the most out of DuckDB—all through hands-on examples. Open up DuckDB in Action and learn how to: Read and process data from CSV, JSON and Parquet sources both locally and remote Write analytical SQL queries, including aggregations, common table expressions, window functions, special types of joins, and pivot tables Use DuckDB from Python, both with SQL and its "Relational"-API, interacting with databases but also data frames Prepare, ingest and query large datasets Build cloud data pipelines Extend DuckDB with custom functionality Pragmatic and comprehensive, DuckDB in Action introduces the DuckDB database and shows you how to use it to solve common data workflow problems. You won’t need to read through pages of documentation—you’ll learn as you work. Get to grips with DuckDB's unique SQL dialect, learning to seamlessly load, prepare, and analyze data using SQL queries. Extend DuckDB with both Python and built-in tools such as MotherDuck, and gain practical insights into building robust and automated data pipelines. About the Technology DuckDB makes data analytics fast and fun! You don’t need to set up a Spark or run a cloud data warehouse just to process a few hundred gigabytes of data. DuckDB is easily embeddable in any data analytics application, runs on a laptop, and processes data from almost any source, including JSON, CSV, Parquet, SQLite and Postgres. About the Book DuckDB in Action guides you example-by-example from setup, through your first SQL query, to advanced topics like building data pipelines and embedding DuckDB as a local data store for a Streamlit web app. You’ll explore DuckDB’s handy SQL extensions, get to grips with aggregation, analysis, and data without persistence, and use Python to customize DuckDB. A hands-on project accompanies each new topic, so you can see DuckDB in action. What's Inside Prepare, ingest and query large datasets Build cloud data pipelines Extend DuckDB with custom functionality Fast-paced SQL recap: From simple queries to advanced analytics About the Reader For data pros comfortable with Python and CLI tools. About the Authors Mark Needham is a blogger and video creator at @LearnDataWithMark. Michael Hunger leads product innovation for the Neo4j graph database. Michael Simons is a Java Champion, author, and Engineer at Neo4j. Quotes I use DuckDB every day, and I still learned a lot about how DuckDB makes things that are hard in most databases easy! - Jordan Tigani, Founder, MotherDuck An excellent resource! Unlocks possibilities for storing, processing, analyzing, and summarizing data at the edge using DuckDB. - Pramod Sadalage, Director, Thoughtworks Clear and accessible. A comprehensive resource for harnessing the power of DuckDB for both novices and experienced professionals. - Qiusheng Wu, Associate Professor, University of Tennessee Excellent! The book all we ducklings have been waiting for! - Gunnar Morling, Decodable |
O'Reilly Data Science Books
|
|
Database Refactoring Patterns with Pramod Sadalage - Episode 22
2018-03-12 · 04:00
Pramod Sadalage
– guest
,
Tobias Macey
– host
Summary As software lifecycles move faster, the database needs to be able to keep up. Practices such as version controlled migration scripts and iterative schema evolution provide the necessary mechanisms to ensure that your data layer is as agile as your application. Pramod Sadalage saw the need for these capabilities during the early days of the introduction of modern development practices and co-authored a book to codify a large number of patterns to aid practitioners, and in this episode he reflects on the current state of affairs and how things have changed over the past 12 years. Preamble Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Pramod Sadalage about refactoring databases and integrating database design into an iterative development workflow Interview Introduction How did you get involved in the area of data management? You first co-authored Refactoring Databases in 2006. What was the state of software and database system development at the time and why did you find it necessary to write a book on this subject? What are the characteristics of a database that make them more difficult to manage in an iterative context? How does the practice of refactoring in the context of a database compare to that of software? How has the prevalence of data abstractions such as ORMs or ODMs impacted the practice of schema design and evolution? Is there a difference in strategy when refactoring the data layer of a system when using a non-relational storage system? How has the DevOps movement and the increased focus on automation affected the state of the art in database versioning and evolution? What have you found to be the most problematic aspects of databases when trying to evolve the functionality of a system? Looking back over the past 12 years, what has changed in the areas of database design and evolution? How has the landscape of tooling for managing and applying database versioning changed since you first wrote Refactoring Databases? What do you see as the biggest challenges facing us over the next few years? Contact Info Website pramodsadalage on GitHub @pramodsadalage on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Links Database Refactoring Website Book Thoughtworks Martin Fowler Agile Software Development XP (Extreme Programming) Continuous Integration The Book Wikipedia Test First Development DDL (Data Definition Language) DML (Data Modification Language) DevOps Flyway Liquibase DBMaintain Hibernate SQLAlchemy ORM (Object Relational Mapper) ODM (Object Document Mapper) NoSQL Document Database MongoDB OrientDB CouchBase CassandraDB Neo4j ArangoDB Unit Testing Integration Testing OLAP (On-Line Analytical Processing) OLTP (On-Line Transaction Processing) Data Warehouse Docker QA==Quality Assurance HIPAA (Health Insurance Portability and Accountability Act) PCI DSS (Payment Card Industry Data Security Standard) Polyglot Persistence Toplink Java ORM Ruby on Rails ActiveRecord Gem The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast |
Data Engineering Podcast |
|
Martin Fowler
– author
,
Pramod J. Sadalage
– author
The need to handle increasingly larger data volumes is one factor driving the adoption of a new class of nonrelational “NoSQL” databases. Advocates of NoSQL databases claim they can be used to build systems that are more performant, scale better, and are easier to program. NoSQL Distilled is a concise but thorough introduction to this rapidly emerging technology. Pramod J. Sadalage and Martin Fowler explain how NoSQL databases work and the ways that they may be a superior alternative to a traditional RDBMS. The authors provide a fast-paced guide to the concepts you need to know in order to evaluate whether NoSQL databases are right for your needs and, if so, which technologies you should explore further. The first part of the book concentrates on core concepts, including schemaless data models, aggregates, new distribution models, the CAP theorem, and map-reduce. In the second part, the authors explore architectural and design issues associated with implementing NoSQL. They also present realistic use cases that demonstrate NoSQL databases at work and feature representative examples using Riak, MongoDB, Cassandra, and Neo4j. In addition, by drawing on Pramod Sadalage’s pioneering work, NoSQL Distilled shows how to implement evolutionary design with schema migration: an essential technique for applying NoSQL databases. The book concludes by describing how NoSQL is ushering in a new age of Polyglot Persistence, where multiple data-storage worlds coexist, and architects can choose the technology best optimized for each type of data access. |
O'Reilly Data Engineering Books
|