Jovita Tam, data and AI advisor with a background in engineering, law, and finance, joined Yuliia and Dumke to challenge how organizations approach governance. Jovita argues that data governance is a way of thinking, not a tool you purchase, explaining why culture eats strategy and why most governance programs fail at the checkbox exercise. Jovita shares her approach to helping executives understand that governance should be an enabler, not an obstacle, and why treating it as purely compliance or cost center misses the point entirely. Jovita's Linkedin - https://www.linkedin.com/in/jovitatam/
talk-data.com
Topic
Data Governance
104
tagged
Activity Trend
Top Events
The relationship between data governance and AI quality is more critical than ever. As organizations rush to implement AI solutions, many are discovering that without proper data hygiene and testing protocols, they're building on shaky foundations. How do you ensure your AI systems are making decisions based on accurate, appropriate information? What benchmarking strategies can help you measure real improvement rather than just increased output? With AI now touching everything from code generation to legal documents, the consequences of poor quality control extend far beyond simple errors—they can damage reputation, violate regulations, or even put licenses at risk. David Colwell is the Vice President of Artificial Intelligence and Machine Learning at Tricentis, a global leader in continuous testing and quality engineering. He founded the company’s AI division in 2018 with a mission to make quality assurance more effective and engaging through applied AI innovation. With over 15 years of experience in AI, software testing, and automation, David has played a key role in shaping Tricentis’ intelligent testing strategy. His team developed Vision AI, a patented computer vision–based automation capability within Tosca, and continues to pioneer work in large language model agents and AI-driven quality engineering. Before joining Tricentis, David led testing and innovation initiatives at DX Solutions and OnePath, building automation frameworks and leading teams to deliver scalable, AI-enabled testing solutions. Based in Sydney, he remains focused on advancing practical, trustworthy applications of AI in enterprise software development. In the episode, Richie and David explore AI disasters in legal settings, the balance between AI productivity and quality, the evolving role of data scientists, and the importance of benchmarks and data governance in AI development, and much more. Links Mentioned in the Show: Tricentis 2025 Quality Transformation ReportConnect with DavidCourse: Artificial Intelligence (AI) LeadershipRelated Episode: Building & Managing Human+Agent Hybrid Teams with Karen Ng, Head of Product at HubSpotRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
--- Miami CDO Cheriene Floyd shares how Generative AI is shifting the way cities think about their data.
--- A Chief Data Officer’s role in cities is to turn data into a strategic asset, enabling insights that can be leveraged for resident impact. How is this responsibility changing in the age of generative AI?
--- We’re joined today by Cheriene Floyd to discuss the shift in how CDOs are making data work for their residents. Floyd discusses her path from serving as a strategic planning and performance manager in the City of Miami to becoming the city’s first Chief Data Officer. During her ten years of service as a CDO, she has come to view the role as upholding three key pillars: data governance, analytics, and capacity-building, helping departments connect the dots between disparate datasets to see the bigger picture.
--- As AI changes our relationship to data, it further highlights the adage, “garbage in, garbage out.” Floyd discusses how broad awareness of this truth has manifested in greater buy-in among city staff to leverage data to solve problems, while private sector AI adoption has shifted residents’ expectations when seeking public services. Consequently, the task of shepherding public data becomes even more important, and she offers recommendations from her own experiences to meet these challenges.
--- Learn more about GovEx!
The promise of AI in enterprise settings is enormous, but so are the privacy and security challenges. How do you harness AI's capabilities while keeping sensitive data protected within your organization's boundaries? Private AI—using your own models, data, and infrastructure—offers a solution, but implementation isn't straightforward. What governance frameworks need to be in place? How do you evaluate non-deterministic AI systems? When should you build in-house versus leveraging cloud services? As data and software teams evolve in this new landscape, understanding the technical requirements and workflow changes is essential for organizations looking to maintain control over their AI destiny. Manasi Vartak is Chief AI Architect and VP of Product Management (AI Platform) at Cloudera. She is a product and AI leader with more than a decade of experience at the intersection of AI infrastructure, enterprise software, and go-to-market strategy. At Cloudera, she leads product and engineering teams building low-code and high-code generative AI platforms, driving the company’s enterprise AI strategy and enabling trusted AI adoption across global organizations. Before joining Cloudera through its acquisition of Verta, Manasi was the founder and CEO of Verta, where she transformed her MIT research into enterprise-ready ML infrastructure. She scaled the company to multi-million ARR, serving Fortune 500 clients in finance, insurance, and capital markets, and led the launch of enterprise MLOps and GenAI products used in mission-critical workloads. Manasi earned her PhD in Computer Science from MIT, where she pioneered model management systems such as ModelDB — foundational work that influenced the development of tools like MLflow. Earlier in her career, she held research and engineering roles at Twitter, Facebook, Google, and Microsoft. In the episode, Richie and Manasi explore AI's role in financial services, the challenges of AI adoption in enterprises, the importance of data governance, the evolving skills needed for AI development, the future of AI agents, and much more. Links Mentioned in the Show: ClouderaCloudera Evolve ConferenceCloudera Agent StudioConnect with ManasiCourse: Introduction to AI AgentsRelated Episode: RAG 2.0 and The New Era of RAG Agents with Douwe Kiela, CEO at Contextual AI & Adjunct Professor at Stanford UniversityRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Summary In this episode of the Data Engineering Podcast Matt Topper, president of UberEther, talks about the complex challenge of identity, credentials, and access control in modern data platforms. With the shift to composable ecosystems, integration burdens have exploded, fracturing governance and auditability across warehouses, lakes, files, vector stores, and streaming systems. Matt shares practical solutions, including propagating user identity via JWTs, externalizing policy with engines like OPA/Rego and Cedar, and using database proxies for native row/column security. He also explores catalog-driven governance, lineage-based label propagation, and OpenTDF for binding policies to data objects. The conversation covers machine-to-machine access, short-lived credentials, workload identity, and constraining access by interface choke points, as well as lessons from Zanzibar-style policy models and the human side of enforcement. Matt emphasizes the need for trust composition - unifying provenance, policy, and identity context - to answer questions about data access, usage, and intent across the entire data path.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Composable data infrastructure is great, until you spend all of your time gluing it together. Bruin is an open source framework, driven from the command line, that makes integration a breeze. Write Python and SQL to handle the business logic, and let Bruin handle the heavy lifting of data movement, lineage tracking, data quality monitoring, and governance enforcement. Bruin allows you to build end-to-end data workflows using AI, has connectors for hundreds of platforms, and helps data teams deliver faster. Teams that use Bruin need less engineering effort to process data and benefit from a fully integrated data platform. Go to dataengineeringpodcast.com/bruin today to get started. And for dbt Cloud customers, they'll give you $1,000 credit to migrate to Bruin Cloud.Your host is Tobias Macey and today I'm interviewing Matt Topper about the challenges of managing identity and access controls in the context of data systemsInterview IntroductionHow did you get involved in the area of data management?The data ecosystem is a uniquely challenging space for creating and enforcing technical controls for identity and access control. What are the key considerations for designing a strategy for addressing those challenges?For data acess the off-the-shelf options are typically on either extreme of too coarse or too granular in their capabilities. What do you see as the major factors that contribute to that situation?Data governance policies are often used as the primary means of identifying what data can be accesssed by whom, but translating that into enforceable constraints is often left as a secondary exercise. How can we as an industry make that a more manageable and sustainable practice?How can the audit trails that are generated by data systems be used to inform the technical controls for identity and access?How can the foundational technologies of our data platforms be improved to make identity and authz a more composable primitive?How does the introduction of streaming/real-time data ingest and delivery complicate the challenges of security controls?What are the most interesting, innovative, or unexpected ways that you have seen data teams address ICAM?What are the most interesting, unexpected, or challenging lessons that you have learned while working on ICAM?What are the aspects of ICAM in data systems that you are paying close attention to?What are your predictions for the industry adoption or enforcement of those controls?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links UberEtherJWT == JSON Web TokenOPA == Open Policy AgentRegoPingIdentityOktaMicrosoft EntraSAML == Security Assertion Markup LanguageOAuthOIDC == OpenID ConnectIDP == Identity ProviderKubernetesIstioAmazon CEDAR policy languageAWS IAMPII == Personally Identifiable InformationCISO == Chief Information Security OfficerOpenTDFOpenFGAGoogle ZanzibarRisk Management FrameworkModel Context ProtocolGoogle Data ProjectTPM == Trusted Platform ModulePKI == Public Key InfrastructurePassskeysDuckLakePodcast EpisodeAccumuloJDBCOpenBaoHashicorp VaultLDAPThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
AI is moving fast, but are organizations prepared to keep up? In this episode, data professional Laura Madsen joins us to unpack why most companies are lagging behind, how tech debt is holding businesses back, and why knowledge graphs are the way forward. Join us for a bold conversation on why the AI revolution needs better data governance, not just bigger models. What You'll Learn: Who's thriving in disruption, which industries embrace AI, and why others are stuck The hidden cost of tech debt and why most organizations avoid real transformation The power of knowledge graphs, and why they're the key to making AI work at scale What AI still can't do for us, and the gaps we need to fill with human expertise Follow Laura on LinkedIn! Register for free to be part of the next live session: https://bit.ly/3XB3A8b Follow us on Socials: LinkedIn YouTube Instagram (Mavens of Data) Instagram (Maven Analytics) TikTok Facebook Medium X/Twitter
Business intelligence has been transforming organizations for decades, yet many companies still struggle with widespread adoption. With less than 40% of employees in most organizations having access to BI tools, there's a significant 'information underclass' making decisions without data-driven insights. How can businesses bridge this gap and achieve true information democracy? While new technologies like generative AI and semantic layers offer promising solutions, the fundamentals of data quality and governance remain critical. What balance should organizations strike between investing in innovative tools and strengthening their data infrastructure? How can you ensure your business becomes a 'data athlete' capable of making hyper-decisive moves in an uncertain economic landscape? Howard Dresner is founder and Chief Research Officer at Dresner Advisory Services and a leading voice in Business Intelligence (BI), credited with coining the term “Business Intelligence” in 1989. He spent 13 years at Gartner as lead BI analyst, shaping its research agenda and earning recognition as Analyst of the Year, Distinguished Analyst, and Gartner Fellow. He also led Gartner’s BI conferences in Europe and North America. Before founding Dresner Advisory in 2007, Howard was Chief Strategy Officer at Hyperion Solutions, where he drove strategy and thought leadership, helping position Hyperion as a leader in performance management prior to its acquisition by Oracle. Howard has written two books, The Performance Management Revolution – Business Results through Insight and Action, and Profiles in Performance – Business Intelligence Journeys and the Roadmap for Change - both published by John Wiley & Sons. In the episode, Richie and Howard explore the surprising low penetration of business intelligence in organizations, the importance of data governance and infrastructure, the evolving role of AI in BI, and the strategic initiatives driving BI usage, and much more. Links Mentioned in the Show: Dresner Advisory ServicesHoward’s Book - Profiles in Performance: Business Intelligence Journeys and the Roadmap for ChangeConnect with HowardSkill Track: Power BI FundamentalsRelated Episode: The Next Generation of Business Intelligence with Colin Zima, CEO at OmniRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Kasriel Kay, leading data democratization at Velotix, joined Yuliia and Dumke to challenge conventional wisdom about data governance and catalogs. Kasriel argues that data catalogs provide visibility but fail to deliver business value, comparing them to "buying JIRA and expecting agile practices." He advocates for shifting from restrictive data governance to data enablement through policy-based access control that considers user attributes, data sensitivity, and business context. Kasriel explains how AI-driven policy engines can learn from organizational behavior to automatically grant appropriate data access while maintaining compliance, ultimately reducing time-to-insight and unlocking missed business opportunities.
The modern data stack has transformed how organizations work with data, but are our BI tools keeping pace with these changes? As data schemas become increasingly fluid and analysis needs range from quick explorations to production-grade reporting, traditional approaches are being challenged. How can we create analytics experiences that accommodate both casual spreadsheet users and technical data modelers? With semantic layers becoming crucial for AI integration and data governance growing in importance, what skills do today's BI professionals need to master? Finding the balance between flexibility and governance is perhaps the greatest challenge facing data teams today. Colin Zima is the Co-Founder and CEO of Omni, a business intelligence platform focused on making data more accessible and useful for teams of all sizes. Prior to Omni, he was Chief Analytics Officer and VP of Product at Looker, where he helped shape the product and data strategy leading up to its acquisition by Google for $2.6 billion. Colin’s background spans roles in data science, analytics, and product leadership, including positions at Google, HotelTonight, and as founder of the restaurant analytics startup PrimaTable. He holds a degree in Operations Research and Financial Engineering from Princeton University and began his career as a Structured Credit Analyst at UBS. In the episode, Richie and Colin explore the evolution of BI tools, the challenges of integrating casual and rigorous data analysis, the role of semantic layers, and the impact of AI on business intelligence. They discuss the importance of understanding business needs, creating user-focused dashboards, and the future of data products, and much more. Links Mentioned in the Show: OmniConnect with ColinSkill Track: Design in Power BIRelated Episode: Self-Service Business Intelligence with Sameer Al-Sakran, CEO at MetabaseRegister for RADAR AI - June 26 New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Send us a text Welcome to the cozy corner of the tech world where ones and zeros mingle with casual chit-chat. Datatopics Unpluggedis your go-to spot for relaxed discussions around tech, news, data, and society. Dive into conversations that should flow as smoothly as your morning coffee (but don’t), where industry insights meet laid-back banter. Whether you're a data aficionado or just someone curious about the digital age, pull up a chair, relax, and let's get into the heart of data—unplugged style! In this episode, we dig deep into a concept everyone pretends to understand: metadata. Joined by our guest Corentin, we unpack what it really means, why it’s more than just “data about data,” and how to make metadata management less of a formality and more of a value driver. Expect hot takes, real-world metaphors, and zero tolerance for shelfware strategies as we cover: Defining metadata: Beyond the buzzphrase, into systems thinkingMetadata vs. data governance: Why this split often misses the pointShop-floor pragmatism: What lean thinking brings to metadata workflowsCommon traps: Like starting with tools instead of actual pain pointsDriving value: From tribal knowledge to structured, sustainable processesWhether you're managing a data platform or just wondering why your data catalog feels like a graveyard, this one’s for you.
Retrieval Augmented Generation (RAG) continues to be a foundational approach in AI despite claims of its demise. While some marketing narratives suggest RAG is being replaced by fine-tuning or long context windows, these technologies are actually complementary rather than competitive. But how do you build a truly effective RAG system that delivers accurate results in high-stakes environments? What separates a basic RAG implementation from an enterprise-grade solution that can handle complex queries across disparate data sources? And with the rise of AI agents, how will RAG evolve to support more dynamic reasoning capabilities? Douwe Kiela is the CEO and co-founder of Contextual AI, a company at the forefront of next-generation language model development. He also serves as an Adjunct Professor in Symbolic Systems at Stanford University, where he contributes to advancing the theoretical and practical understanding of AI systems. Before founding Contextual AI, Douwe was the Head of Research at Hugging Face, where he led groundbreaking efforts in natural language processing and machine learning. Prior to that, he was a Research Scientist and Research Lead at Meta’s FAIR (Fundamental AI Research) team, where he played a pivotal role in developing Retrieval-Augmented Generation (RAG)—a paradigm-shifting innovation in AI that combines retrieval systems with generative models for more grounded and contextually aware responses. In the episode, Richie and Douwe explore the misconceptions around the death of Retrieval Augmented Generation (RAG), the evolution to RAG 2.0, its applications in high-stakes industries, the importance of metadata and entitlements in data governance, the potential of agentic systems in enterprise settings, and much more. Links Mentioned in the Show: Contextual AIConnect with DouweCourse: Retrieval Augmented Generation (RAG) with LangChainRelated Episode: High Performance Generative AI Applications with Ram Sriharsha, CTO at PineconeRegister for RADAR AI - June 26 New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
This blog defines the governance requirements that streaming data pipelines must meet to make artificial intelligence/machine learning (AI/ML) initiatives successful. Published at: https://www.eckerson.com/articles/streaming-data-governance-three-must-have-requirements-to-support-ai-ml-innovation
Jason Touleyrou, Data Engineering Manager at Corewell Health joined Yuliia to discuss why most organizations struggle with data governance. He argues that data teams should focus on building trust through flexible systems rather than rigid controls. Challenging traditional data quality approaches, Jason suggests starting with basic freshness checks and evolving governance gradually. Drawing from his experience across healthcare and marketing analytics, he shares practical strategies for implementing governance during migrations and measuring data team value beyond conventional metrics. Jason's linkedin page - https://www.linkedin.com/in/jasontouleyrou/
Sarah Levy (CEO of Euno) joins me to chat about modern data governance for analytics.
Euno - https://euno.ai/
2024 was another huge year for data and AI. Generative AI continued to shape the way we work and interact with technology, with companies of all sizes racing to integrate AI into their products. We saw strides in tools like AI-enhanced data science notebooks, rapid adoption of generative image AI, and a steady march toward video generation AI. At the same time, foundational skills like AI literacy and data governance gained traction as critical areas for individuals and organizations to master. This time last year, DataCamp Co-Founders Jonathan and Martijn made a series of predictions and data and AI for 2024, today, they join Richie to reflect on their 2024 predictions and share their vision for data and AI in 2025. In the episode, Richie, Jonathan, and Martijn review the mainstream adoption of generative AI and its journey toward daily use, the rise of AI literacy as a critical skill, the growing overlap between data science and software engineering with the emergence of AI engineers, evolving trends in programming languages, how generative AI has moved from prototype to production, the near-mainstreaming of video generation AI, why AI hype continues to thrive and much more. Links Mentioned in the Show: Data & AI Trends & Predictions 2025Skill Track: AI Business FundamentalsRelated Episode: Data Trends & Predictions 2024 with DataCamp's CEO & COO, Jonathan Cornelissen & Martijn TheuwissenRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
AI features and products are the hottest area of software development. Creating high quality AI software is both essential and challenging for many businesses. In this episode, we look at retrieval augmented generation, an important technique for improving text generation quality in AI applications. Beyond technical measures, we look at the broader quality problem for AI applications. How do you ensure your AI applications are effective and secure? What steps should you take to integrate AI into your existing data governance frameworks? And how do you measure the success of these AI-driven solutions? Theresa Parker is the Director of Product Management at Rocket Software. She has 25 years of experience as a technology executive with a focus on software development processes, consultancy, and business development. Her recent work in content management focuses on the use of AI and RAG to improve content discoverability. Sudhi Balan is the Chief Technology Officer for AI & Cloud. He leads the AI and data teams for data modernization, driving AI adoption of Rocket's structured and unstructured data products. He also shapes AI strategy for Rocket’s infrastructure and app portfolio. He has earned patents for safe and scalable applications of transformational technology. Previously, he led digital transformation and hybrid cloud strategy for Rocket’s unstructured data business and was Senior Director of Product Development at ASG. In the episode, Richie, Theresa, and Sudhi explore retrieval-augmented generation, its applications in customer support and loan processing, the importance of data governance and privacy, the role of testing and guardrails in AI, cost management strategies, and the potential of AI to transform customer experiences, and much more. Links Mentioned in the Show: Rocket SoftwareConnect with Theresa and SudhiCourse: Retrieval Augmented Generation (RAG) with LangChainRelated Episode: Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AIRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Imagine spending millions on data tools only to find you can’t trust the answers they provide. What if different teams define key metrics in different ways? Without a clear, unified approach, chaos reigns, and confidence erodes. What role do data governance and semantic layers play in helping you trust the AI tools you build and the insights you get from your data? Sarah Levy is a seasoned executive with extensive experience in data science, artificial intelligence, and technology leadership. Currently serving as Co-Founder and CEO of Euno since January 2023, Sarah has previously held significant positions, including VP of Data Science and Data Analytics for Real Estate at Pagaya and CTO at Sight Diagnostics, where innovative advancements in blood testing were achieved. With a strong foundation in research and development from roles at Sight Diagnostics and Natural Intelligence, as well as a robust background in cyber security gained from tenure at the IDF, Sarah has consistently driven impactful decision-making and technological advancements throughout their career. Academic credentials include a Master's degree in Condensed Matter Physics from the Weizmann Institute of Science and a Bachelor's degree in Mathematics and Physics from The Hebrew University of Jerusalem. In the episode, Richie and Sarah explore the challenges of data governance, the role of semantic layers in ensuring data trust, the emergence of analytics engineers, the integration of AI in data processes, and much more. Links Mentioned in the Show: EunoConnect with SarahCourse: Responsible AI Data ManagementRelated Episode: How Data Leaders Can Make Data Governance a Priority with Saurabh Gupta, Chief Strategy & Revenue Officer at The Modern Data CompanyRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Every organization today is exploring generative AI to drive value and push their business forward. But a common pitfall is that AI strategies often don’t align with business objectives, leading companies to chase flashy tools rather than focusing on what truly matters. How can you avoid these traps and ensure your AI efforts are not only innovative but also aligned with real business value? Leon Gordon, is a leader in data analytics and AI. A current Microsoft Data Platform MVP based in the UK, founder of Onyx Data. During the last decade, he has helped organizations improve their business performance, use data more intelligently, and understand the implications of new technologies such as artificial intelligence and big data. Leon is an Executive Contributor to Brainz Magazine, a Thought Leader in Data Science for the Global AI Hub, chair for the Microsoft Power BI – UK community group and the DataDNA data visualization community as well as an international speaker and advisor. In the episode, Adel and Leon explore aligning AI with business strategy, building AI use-cases, enterprise AI-agents, AI and data governance, data-driven decision making, key skills for cross-functional teams, AI for automation and augmentation, privacy and AI and much more. Links Mentioned in the Show: Onyx DataConnect with LeonLeon’s Linkedin Course - How to Build and Execute a Successful Data StrategySkill Track: AI Business FundamentalsRelated Episode: Generative AI in the Enterprise with Steve Holden, Senior Vice President and Head of Single-Family Analytics at Fannie MaeRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Data governance is more important than ever today, but it's something a lot of companies still struggle with. During this live show, George Firican will demystify data governance, breaking down its core components and sharing practical advice that you can use to make improvements at your organization. What You'll Learn: Why data governance is more important than ever in 2024 The core pillars of a strong data governance program Practical tips for launching a new data governance program Register for free to be part of the next live session: https://bit.ly/3XB3A8b About our guest: George Firican is the Founder of LightsOnData, and a Data Governance expert and course creator. The Practical Data Governance: Implementation Course Subscribe to George's YouTube Channel Follow George on LinkedIn
Follow us on Socials: LinkedIn YouTube Instagram (Mavens of Data) Instagram (Maven Analytics) TikTok Facebook Medium X/Twitter
There’s been a lot of pressure to add AI to almost every digital tool and service recently, and two years into the AI hype cycle, we’re seeing two types of problems. The first is organizations that haven’t done much yet with AI because they don’t know where to start. The second is organizations that rushed into AI and failed because they didn’t know what they were doing. Both are symptoms of the same problem: not having an AI strategy and not understanding how to tactically implement AI. There’s a lot to consider around choosing the right project and putting processes and skilled talent in place, not to mention worrying about costs and return on investment. Tathagat Varma is the Global TechOps Leader at Walmart Global Tech. Tathagat is responsible for leading strategic business initiatives, enterprise agile transformation, technical learning and enablement, strategic technical initiatives, startup ecosystem engagement, and internal events across Walmart Global Tech. He also provides support to horizontal technical and internal innovation programs in the company. Starting as a Computer Scientist with DRDO, and with an overall experience of 27 years, Tathagat has played significant technical and leadership roles in establishing and growing organizations like NerdWallet, ChinaSoft International, McAfee, Huawei, Network General, NetScout System, [24]7 Innovations Labs and Yahoo!, and played key engineering roles at Siemens and Philips. In the episode, Richie and Tathagat explore failures in AI adoption, the role of leadership in AI adoption, AI strategy and business objective alignment, investment and timeline for AI projects, identifying starter AI projects, skills for AI success, building a culture of AI adoption, the potential of AI and much more. Links Mentioned in the Show: Walmart Global TechConnect with Tathagat[Course] Data Governance ConceptsRelated Episode: How Walmart Leverages Data & AI with Swati Kirti, Sr Director of Data Science at WalmartRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business