talk-data.com talk-data.com

Topic

Data Quality

data_management data_cleansing data_validation

537

tagged

Activity Trend

82 peak/qtr
2020-Q1 2026-Q1

Activities

537 activities · Newest first

Summary In this episode of the Data Engineering Podcast Omri Lifshitz (CTO) and Ido Bronstein (CEO) of Upriver talk about the growing gap between AI's demand for high-quality data and organizations' current data practices. They discuss why AI accelerates both the supply and demand sides of data, highlighting that the bottleneck lies in the "middle layer" of curation, semantics, and serving. Omri and Ido outline a three-part framework for making data usable by LLMs and agents: collect, curate, serve, and share challenges of scaling from POCs to production, including compounding error rates and reliability concerns. They also explore organizational shifts, patterns for managing context windows, pragmatic views on schema choices, and Upriver's approach to building autonomous data workflows using determinism and LLMs at the right boundaries. The conversation concludes with a look ahead to AI-first data platforms where engineers supervise business semantics while automation stitches technical details end-to-end.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Composable data infrastructure is great, until you spend all of your time gluing it together. Bruin is an open source framework, driven from the command line, that makes integration a breeze. Write Python and SQL to handle the business logic, and let Bruin handle the heavy lifting of data movement, lineage tracking, data quality monitoring, and governance enforcement. Bruin allows you to build end-to-end data workflows using AI, has connectors for hundreds of platforms, and helps data teams deliver faster. Teams that use Bruin need less engineering effort to process data and benefit from a fully integrated data platform. Go to dataengineeringpodcast.com/bruin today to get started. And for dbt Cloud customers, they'll give you $1,000 credit to migrate to Bruin Cloud.Your host is Tobias Macey and today I'm interviewing Omri Lifshitz and Ido Bronstein about the challenges of keeping up with the demand for data when supporting AI systemsInterview IntroductionHow did you get involved in the area of data management?We're here to talk about "The Growing Gap Between Data & AI". From your perspective, what is this gap, and why do you think it's widening so rapidly right now?How does this gap relate to the founding story of Upriver? What problems were you and your co-founders experiencing that led you to build this?The core premise of new AI tools, from RAG pipelines to LLM agents, is that they are only as good as the data they're given. How does this "garbage in, garbage out" problem change when the "in" is not a static file but a complex, high-velocity, and constantly changing data pipeline?Upriver is described as an "intelligent agent system" and an "autonomous data engineer." This is a fascinating "AI to solve for AI" approach. Can you describe this agent-based architecture and how it specifically works to bridge that data-AI gap?Your website mentions a "Data Context Layer" that turns "tribal knowledge" into a "machine-usable mode." This sounds critical for AI. How do you capture that context, and how does it make data "AI-ready" in a way that a traditional data catalog or quality tool doesn't?What are the most innovative or unexpected ways you've seen companies trying to make their data "AI-ready"? And where are the biggest points of failure you observe?What has been the most challenging or unexpected lesson you've learned while building an AI system (Upriver) that is designed to fix the data foundation for other AI systems?When is an autonomous, agent-based approach not the right solution for a team's data quality problems? What organizational or technical maturity is required to even start closing this data-AI gap?What do you have planned for the future of Upriver? And looking more broadly, how do you see this gap between data and AI evolving over the next few years?Contact Info Ido - LinkedInOmri - LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links UpriverRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeAI AgentContext WindowModel Finetuning)The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Matt Topper, president of UberEther, talks about the complex challenge of identity, credentials, and access control in modern data platforms. With the shift to composable ecosystems, integration burdens have exploded, fracturing governance and auditability across warehouses, lakes, files, vector stores, and streaming systems. Matt shares practical solutions, including propagating user identity via JWTs, externalizing policy with engines like OPA/Rego and Cedar, and using database proxies for native row/column security. He also explores catalog-driven governance, lineage-based label propagation, and OpenTDF for binding policies to data objects. The conversation covers machine-to-machine access, short-lived credentials, workload identity, and constraining access by interface choke points, as well as lessons from Zanzibar-style policy models and the human side of enforcement. Matt emphasizes the need for trust composition - unifying provenance, policy, and identity context - to answer questions about data access, usage, and intent across the entire data path.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Composable data infrastructure is great, until you spend all of your time gluing it together. Bruin is an open source framework, driven from the command line, that makes integration a breeze. Write Python and SQL to handle the business logic, and let Bruin handle the heavy lifting of data movement, lineage tracking, data quality monitoring, and governance enforcement. Bruin allows you to build end-to-end data workflows using AI, has connectors for hundreds of platforms, and helps data teams deliver faster. Teams that use Bruin need less engineering effort to process data and benefit from a fully integrated data platform. Go to dataengineeringpodcast.com/bruin today to get started. And for dbt Cloud customers, they'll give you $1,000 credit to migrate to Bruin Cloud.Your host is Tobias Macey and today I'm interviewing Matt Topper about the challenges of managing identity and access controls in the context of data systemsInterview IntroductionHow did you get involved in the area of data management?The data ecosystem is a uniquely challenging space for creating and enforcing technical controls for identity and access control. What are the key considerations for designing a strategy for addressing those challenges?For data acess the off-the-shelf options are typically on either extreme of too coarse or too granular in their capabilities. What do you see as the major factors that contribute to that situation?Data governance policies are often used as the primary means of identifying what data can be accesssed by whom, but translating that into enforceable constraints is often left as a secondary exercise. How can we as an industry make that a more manageable and sustainable practice?How can the audit trails that are generated by data systems be used to inform the technical controls for identity and access?How can the foundational technologies of our data platforms be improved to make identity and authz a more composable primitive?How does the introduction of streaming/real-time data ingest and delivery complicate the challenges of security controls?What are the most interesting, innovative, or unexpected ways that you have seen data teams address ICAM?What are the most interesting, unexpected, or challenging lessons that you have learned while working on ICAM?What are the aspects of ICAM in data systems that you are paying close attention to?What are your predictions for the industry adoption or enforcement of those controls?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links UberEtherJWT == JSON Web TokenOPA == Open Policy AgentRegoPingIdentityOktaMicrosoft EntraSAML == Security Assertion Markup LanguageOAuthOIDC == OpenID ConnectIDP == Identity ProviderKubernetesIstioAmazon CEDAR policy languageAWS IAMPII == Personally Identifiable InformationCISO == Chief Information Security OfficerOpenTDFOpenFGAGoogle ZanzibarRisk Management FrameworkModel Context ProtocolGoogle Data ProjectTPM == Trusted Platform ModulePKI == Public Key InfrastructurePassskeysDuckLakePodcast EpisodeAccumuloJDBCOpenBaoHashicorp VaultLDAPThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode Kate Shaw, Senior Product Manager for Data and SLIM at SnapLogic, talks about the hidden and compounding costs of maintaining legacy systems—and practical strategies for modernization. She unpacks how “legacy” is less about age and more about when a system becomes a risk: blocking innovation, consuming excess IT time, and creating opportunity costs. Kate explores technical debt, vendor lock-in, lost context from employee turnover, and the slippery notion of “if it ain’t broke,” especially when data correctness and lineage are unclear. Shee digs into governance, observability, and data quality as foundations for trustworthy analytics and AI, and why exit strategies for system retirement should be planned from day one. The discussion covers composable architectures to avoid monoliths and big-bang migrations, how to bridge valuable systems into AI initiatives without lock-in, and why clear success criteria matter for AI projects. Kate shares lessons from the field on discovery, documentation gaps, parallel run strategies, and using integration as the connective tissue to unlock data for modern, cloud-native and AI-enabled use cases. She closes with guidance on planning migrations, defining measurable outcomes, ensuring lineage and compliance, and building for swap-ability so teams can evolve systems incrementally instead of living with a “bowl of spaghetti.”

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Your host is Tobias Macey and today I'm interviewing Kate Shaw about the true costs of maintaining legacy systemsInterview IntroductionHow did you get involved in the area of data management?What are your crtieria for when a given system or service transitions to being "legacy"?In order for any service to survive long enough to become "legacy" it must be serving its purpose and providing value. What are the common factors that prompt teams to deprecate or migrate systems?What are the sources of monetary cost related to maintaining legacy systems while they remain operational?Beyond monetary cost, economics also have a concept of "opportunity cost". What are some of the ways that manifests in data teams who are maintaining or migrating from legacy systems?How does that loss of productivity impact the broader organization?How does the process of migration contribute to issues around data accuracy, reliability, etc. as well as contributing to potential compromises of security and compliance?Once a system has been replaced, it needs to be retired. What are some of the costs associated with removing a system from service?What are the most interesting, innovative, or unexpected ways that you have seen teams address the costs of legacy systems and their retirement?What are the most interesting, unexpected, or challenging lessons that you have learned while working on legacy systems migration?When is deprecation/migration the wrong choice?How have evolutionary architecture patterns helped to mitigate the costs of system retirement?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links SnapLogicSLIM == SnapLogic Intelligent ModernizerOpportunity CostSunk Cost FallacyData GovernanceEvolutionary ArchitectureThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Freedom through structure: How WHOOP scales analyst autonomy with dbt

AI and dbt unlocks the potential for any data analyst to work like full-stack dbt developers. But without the right guardrails, that freedom can quickly turn into chaos and technical debt. At WHOOP, we embraced analyst autonomy, and scaled it responsibly. In this session, you’ll learn how we empowered analysts to build in dbt while protecting data quality, staying aligned with the broader team, and avoiding technical debt. If you’re looking to give analysts more ownership without giving up control, this session will show you how to get there.

Towards a more perfect pipeline: CI/CD in the dbt Platform
talk
by Aaiden Witten (United Services Automobile Association) , Michael Sturm (United Services Automobile Association) , Timothy Shiveley (United Services Automobile Association)

In this session we’ll show how we integrated CI/CD dbt jobs to validate data and run tests on every merge request. Attendees will walk away with a blueprint for implementing CI/CD for dbt, lessons learned from our journey and best practices to keep data quality high without slowing down development.

Delve into the core concepts and applications of data quality with dbt. With a focus on practical implementation, you'll learn to deploy custom data tests, unit testing, and linting to ensure the reliability and accuracy of your data operations. After this course, you will be able to: Recognize scenarios that call for testing data quality Implement efficient data testing methods to ensure reliability (data tests, unit tests) Navigate other quality checks in dbt (linting, CI, compare) Prerequisites for this course include: dbt Fundamentals What to bring: You will need to bring your own laptop to complete the hands-on exercises. We will provide all the other sandbox environments for dbt and data platform. Duration: 2 hours Fee: $200 Trainings and certifications are not offered separately and must be purchased with a Coalesce pass Trainings and certifications are not available for Coalesce Online passes

Delve into the core concepts and applications of data quality with dbt. With a focus on practical implementation, you'll learn to deploy custom data tests, unit testing, and linting to ensure the reliability and accuracy of your data operations. After this course, you will be able to: Recognize scenarios that call for testing data quality Implement efficient data testing methods to ensure reliability (data tests, unit tests) Navigate other quality checks in dbt (linting, CI, compare) Prerequisites for this course include: dbt Fundamentals What to bring: You will need to bring your own laptop to complete the hands-on exercises. We will provide all the other sandbox environments for dbt and data platform. Duration: 2 hours Fee: $200 Trainings and certifications are not offered separately and must be purchased with a Coalesce pass Trainings and certifications are not available for Coalesce Online passes

Decisions you can count on: AI + dbt at DocuSign

AI is reshaping every stage of the analytics process. And at Docusign, that transformation is already underway. The data team is using AI to boost data quality, save engineers time, and deliver insights business users can actually trust. This session takes you end to end, from automated unit tests to governed metrics, showing how Docusign connects AI-driven development with self-serve analytics powered by the dbt Semantic Layer. The result: faster delivery, fewer surprises, and smarter decisions across the org.

Opening keynote: Rewrite
talk
by Ken Ostner (dbt Labs) , Jonny Reichwald (EQT) , Jerrie Kumalah Kenney (dbt Labs) , Faith McKenna (dbt Labs) , Tristan Handy (dbt Labs) , Øyvind Barsnes Eraker (Norges Bank Investment Management) , Elias DeFaria (dbt Labs) , George Fraser (Fivetran)

Let’s kick off Coalesce 2025 with a bang! At our opening keynote, you’ll hear how dbt is redefining data work in the age of AI. You’ll hear from dbt Labs CEO and Founder Tristan Handy for his perspective on how AI is rapidly pushing our industry forward and how the dbt Fusion engine is redefining the dbt standard. Tristan will also be joined by Fivetran CEO George Fraser as they discuss their shared vision of an open data infrastructure. dbt Labs product and technical leaders will also share the latest innovations in dbt including: how Fusion is making the development experience more efficient and intelligent than ever before, and our progress on embedded cost optimization and AI experiences designed to help our users expedite workflows while keeping costs and data quality in check. Throughout, dbt customers and partners will connect the dots between dbt’s vision and product roadmap with real-world customer outcomes. Get a front-row seat to the action. For our Coalesce Online attendees, join us on Slack in #coalesce-2025 to stay connected during keynote!

Jaja Finance is on a mission to empower customers to buy, borrow, and build, driven by technology, fuelled by data, and built for the future. But internally, the data team faced fragmented ways of working: non-standard modelling, limited transparency across teams, slow time-to-serve, all while navigating governance needs. In just one year, the team built a resilient, transparent, scalable data foundation by consolidating all data on Snowflake and standardizing development in Coalesce. 

In this session, Sarah Tolfrey, Head of Data Operations shares Jaja’s foundation-first playbook, from templating and data quality to iterative feedback loops that helped unlock:

•5x faster delivery on complex and unstructured data •Same-day turnarounds for change requests with downstream impact checks •30% faster development on complex projects usingCoalesceAI-powered Copilot, and  •47% reduction in model compute costs •Improved onboarding and cross-team visibility. This transformation opened the door to cutting-edge AI projects and broader analytics use across the business, accelerating Jaja’s mission to serve customers with speed, intelligence, and confidence.

See how a global electronics manufacturer demonstrated the value of modern data governance and quality by integrating Semarchy MDM natively on Snowflake. This session highlights the reference architecture, unification of critical data domains, and seamless governance at scale—showing how trusted, high-quality data empowers innovation and business impact.

How to do real TDD in data science? A journey from pandas to polars with pelage!

In the world of data, inconsistencies or inaccuracies often presents a major challenge to extract valuable insights. Yet the number of robust tools and practices to address those issues remain limited. Particularly, the practice of TDD remains quite difficult in data science, while it is a standard among classic software development, also because of poorly adapted tools and frameworks.

To address this issue we released Pelage, an open-source Python package to facilitate data exploration and testing, which relies on Polars intuitive syntax and speed. Pelage empowers data scientists and analysts to facilitate data transformation, enhance data quality and improve code clarity.

We will demonstrate, in a test-first approach, how you can use this library in a meaningful data science workflow to gain greater confidence for your data transformations.

See website: https://alixtc.github.io/pelage/

Arch Capital Group, a $34 billion S&P 500 specialty insurance leader managing $21.5 billion in gross premiums across 60+ global offices, faced a critical challenge: ensuring data quality and consistency across their complex risk assessment operations. With 25+ predictive models supporting AI-driven underwriting for specialty lines—the industry's most complex and unusual risks—incomplete or inaccurate data inputs threatened the accuracy of critical business decisions spanning property & casualty, reinsurance, and mortgage insurance operations. 

In this session, Sam from Arch Capital shares how the organization partnered with DQLabs to transform their data trust framework, implementing automated quality checks across their global data ecosystem. Learn how this transformation enabled Arch to maintain their disciplined underwriting approach while scaling operations, improve regulatory compliance across multiple jurisdictions, and enhance their ability to respond rapidly to emerging risks while supporting the data accuracy essential for their leadership position in specialty insurance markets.

Sound AI outcomes start with trusted, high-quality data and delivering it efficiently is now a core part of every data and AI strategy. In this session, we’ll discuss how AI-supportive capabilities such as autonomous data catalogs, unstructured metadata ingestion and automated data trust scoring are transforming how organizations deliver AI-ready data products at scale with less hands-on staff involvement.

You’ll see how GenAI and agentic AI can accelerate reliable data delivery at every stage, from identifying and fixing data issues to building semantic business layers that give your AI models the context-rich inputs needed for success. We’ll also explore how agentic AI enables self-updating catalogs, proactive data quality monitoring, and automated remediation to free your teams to focus on innovation instead of maintenance.

If you’re shaping your organization’s data and AI strategy as a CDO, CDAIO, CIO, or data leader, this is your blueprint to operationalizing trusted, governed, and AI-ready data for every initiative, faster and smarter.

As organisations scale their data ecosystems, ensuring consistency, compliance, and usability across multiple data products becomes a critical challenge. This session explores a practical approach to implementing a Data Governance framework that balances control with agility.

Key takeaways:

- We will discuss key principles, common pitfalls, and best practices for aligning governance with business objectives while fostering innovation.

- Attendees will gain insights into designing governance policies, automating compliance, and driving adoption across decentralised data teams.

- Real-world examples will illustrate how to create a scalable, federated model that enhances data quality, security, and interoperability across diverse data products.