talk-data.com talk-data.com

Topic

DataViz

Data Visualization

bi charts dashboards

434

tagged

Activity Trend

43 peak/qtr
2020-Q1 2026-Q1

Activities

434 activities · Newest first

Visual Data Insights Using SAS ODS Graphics: A Guide to Communication-Effective Data Visualization

SAS ODS graphics users will learn in this book how to visually understand and communicate the significance of data to deliver images for quick and easy insight, with precise numbers. Many charts or plots require the viewer to run the eye from a bar end or plot point to some point on an axis, and then to interpolate between tick marks to estimate the value. Some design choices can lead to wrong conclusions or mistaken impressions. Graphic software relies on defaults to deliver something if you make a minimal effort, but that something is not likely to be exactly what you want. Visual Data Insights Using SAS ODS Graphics provides examples using experience-based design principles. It presents examples of bar charts, pie charts, and trend lines or time series plots, the graph types commonly used in business, other organizations, and the media for visual insight into data. Newer graphs are also included: dot plots, needle plots, waterfall charts, butterflycharts, heat maps, bubble plots, step plots, high-low plots, and donut charts. In addition, there are basic tools of statistics: scatter plots, box plots, histograms, fit and confidence plots, and distributions. Author LeRoy Bessler introduces unique creations, including sparsely annotated time series, maximally informative bar charts, better box plots, histograms based on interesting atypical rationales, and much more. The examples use SAS sample data sets as input. Any SAS user can experiment with the code presented to see what else is possible, or adapt it to repurpose the design and apply it with a customized version of that code. What You’ll Learn Create graphs that are easily and quickly interpreted, and without ambiguity Supply precise data values that are correct on the graph and correctly associated with the graphic visual elements Take advantage of widely applicable (but not necessarily available elsewhere) design examples Avoid bad practices that are encouraged by poor examples elsewhere Get past sub-optimal designs and results that are built into software defaults Take advantage of less familiar capabilities available in the software Who This Book Is For SAS software users who want to understand their data and/or visually deliver their results

Pandas for Everyone: Python Data Analysis, 2nd Edition

Manage and Automate Data Analysis with Pandas in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if youre new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so theyre easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the best one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning ...

In programming, collaboration and experimentation can be very stressful, since sharing code and making it visible to others can be tedious, time-consuming, and nerve-wracking.Tools like Power BI are changing that entirely, by opening up new ways to collaborate between team members, add layers of customized and complex security to the data teams are working with, and making data much more accessible across organizations.

Ginger Grant joins the show to talk about how organizations can utilize Power BI, Dax, and M to their fullest potential and create new opportunities for experimentation, innovation, and collaboration.

Ginger is the Principal Consultant at the Desert Isle Group, working as an expert in advanced analytic solutions, including machine learning, data warehousing, ETL, reporting and cube development, Power BI, Excel Automation, Data Visualization and training. In addition to her consultant work, she is also a blogger at and global keynote speaker on developments and trends in data. Microsoft has also recognized her technical contributions by awarding her a MVP in Data Platform.

In this episode, we talk about what Power BI is, the common mistakes organizations make when implementing Power BI, advanced use cases, and much more.

Data Visualization with Python and JavaScript, 2nd Edition

How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and JavaScript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and JavaScript libraries. Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while JavaScript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started. You'll learn how to: Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with pandas+Matplotlib+Seaborn Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries

podcast_episode
by Val Kroll , Julie Hoyer , Tim Wilson (Analytics Power Hour - Columbus (OH) , Moe Kiss (Canva) , Michael Helbling (Search Discovery) , Philip Bump (The Washington Post)

As analysts, we conduct analysis on behalf of the business to (hopefully) provide them with clear and objective information to help with making decisions. We use visualizations of data and, when we're really hitting our stride, we even tell data stories. So, how does that compare to mainstream journalism and the stories they tell, especially when there is data that can be visualized in support of the story or the analysis? There could be no better guest than Philip Bump, long-time columnist for The Washington Post, author of the How to Read This Chart weekly newsletter, and author of a soon-to-be-published book about the baby boom generation! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

We talked about:

Angelica’s background Angelica’s books Data journalism How Angelica got into data journalism The field of digital humanities and Angelica’s data journalism course Technical articles vs data journalism articles Transforming reports into data storytelling Are reports to stakeholders considered technical writing? Data visualization in articles Article length The process of writing an article Finding writing topics How Angelica got into writing a book (communication with publishers) The process for writing a book Brainstorming Reviews and revisions Conclusion

Links:

Data Journalism examples (FENCED OUT): https://www.washingtonpost.com/graphics/world/border-barriers/europe-refugee-crisis-border-control/??noredirect=on Data Journalism examples (La tierra esclava): https://latierraesclava.eldiario.es/ Small medium publication aiming at being Stack Overflow of Medium: https://medium.com/syntaxerrorpub Example of a self-published book on Data Visualization: https://www.amazon.com/Introduction-Data-Visualization-Storytelling-Scientist-ebook/dp/B07VYCR3Z6/ref=sr_1_4?crid=4JRJ48O7K8TK&keywords=joses+berengueres&qid=1668270728&sprefix=joses+beremguere%2Caps%2C273&sr=8-4 My novels (in Italian) La bambina e il Clown: https://www.amazon.it/Bambina-Clown-Angelica-Lo-Duca/dp/1500984515/ref=sr_1_9?__mk_it_IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=2KGK9GMN0FAHI&keywords=la+bambina+e+il+clown&qid=1668270769&sprefix=la+bambina+e+il+clown%2Caps%2C88&sr=8-9 My novels (in Italian) Il Violinista: https://www.amazon.it/Violinista-1-Angelica-Lo-Duca/dp/1501009672/ref=sr_1_1?__mk_it_IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=12KTF9EF5UKIG&keywords=il+violinista+lo+duca&qid=1668270791&sprefix=il+violinista+lo+duca%2Caps%2C81&sr=8-1 Course on Data Journalism: https://www.coursera.org/learn/visualization-for-data-journalism

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Microsoft Power BI Quick Start Guide - Third Edition

Discover the power of transforming raw data into actionable insights with "Microsoft Power BI Quick Start Guide." This comprehensive guide introduces you to the core functionalities of Power BI, emphasizing practical demonstration on building data models, visualizations, and streamlining business intelligence processes. By following this book, you'll elevate your data analysis and storytelling skills. What this Book will help me do Connect and import data from various sources into Power BI. Master the usage of Power Query Editor for efficient data cleansing. Create effective and visually appealing Power BI dashboards. Understand and implement data security features, such as row-level and column-level security. Administer a Power BI environment effectively, including tenant management and cloud deployments. Author(s) Devin Knight, Erin Ostrowsky, Mitchell Pearson, and Bradley Schacht are seasoned experts in the field of data analysis and business intelligence. With years of practical experience, they bring a wealth of knowledge in Power BI and data visualization. Their passion for educating others is evident in their clear, approachable, and structured writing style. Who is it for? This book is designed for professionals seeking to delve into Microsoft Power BI's functionalities. Ideal readers include business analysts, data professionals, or enthusiasts aiming to transition from Excel-based solutions to BI platforms. Both beginners wanting to learn BI concepts and intermediate users looking to solidify their Power BI skills will benefit greatly.

podcast_episode
by Betsy Ladyzhets (COVID-19 Data Dispatch; Brown Institute for Media Innovation; MuckRock)

During Data Literacy Month, we shared how data journalists curate and distill data stories to the wider public. Since 2020, Data Journalism has risen both in significance and visibility. Throughout the COVID-19 pandemic, data journalists have been instrumental in keeping the public informed by investigating, challenging, interpreting, and explaining complex datasets.

In this episode, Betsy Ladyzhets joins the show to talk about the state of Data Journalism today, and shares from her experience as a data journalist

Betsy is an independent science, health, and data journalist focused on COVID-19 and Founder of the COVID-19 Data Dispatch, an independent publication providing updates and resources on public COVID-19 data. She is also currently working as a Senior Journalism Fellow with the Documenting COVID-19 project at the Brown Institute for Media Innovation and MuckRock. Her work has been featured in Science News, FiveThirtyEight, MIT Tech Review, and the Covid Tracking Project.

Throughout the show, we discuss the importance of letting data shape a narrative, what characteristics of traditional journalism are needed for data journalists, the best practices for delivering effective data stories, how the rise of AI and data visualization are impacting data journalism, and much more.

Links shared during the episode:

Data Sonification The COVID-19 Data Dispatch The Data Visualization Society

Learning on DataCamp? Take part in this week’s XP-challenge: http://www.datacamp.com/promo/free-week-xp-challenge-2022

Beginning MATLAB and Simulink: From Beginner to Pro

Employ essential tools and functions of the MATLAB and Simulink packages, which are explained and demonstrated via interactive examples and case studies. This revised edition covers features from the latest MATLAB 2022b release, as well as other features that have been released since the first edition published. This book contains dozens of simulation models and solved problems via m-files/scripts and Simulink models which will help you to learn programming and modelling essentials. You’ll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving engineering and scientific computing problems. Beginning MATLAB and Simulink, Second Edition explains various practical issues of programming and modelling in parallel by comparing MATLAB and Simulink. After studying and using this book, you'll be proficient at using MATLAB and Simulink and applying the source code and models from the book's examples as templates for your own projects in data science or engineering. What You Will Learn Master the programming and modelling essentials of MATLAB and Simulink Carry out data visualization with MATLAB Build a GUI and develop App with MATLAB Work with integration and numerical root finding methods Apply MATLAB to differential equations-based models and simulations Use MATLAB and Simulink for data science projects Who This Book Is For Engineers, programmers, data scientists, and students majoring in engineering and scientific computing who are new to MATLAB and Simulink.

Data Storytelling with Google Looker Studio

Data Storytelling with Google Looker Studio is your definitive guide to creating compelling dashboards using Looker Studio. In this book, you'll journey through the principles of effective data visualization and learn how to harness Looker Studio to convey impactful data stories. Step by step, you'll acquire the skills to design, build, and refine dashboards using real-world data. What this Book will help me do Understand and apply data visualization principles to enhance data analysis and storytelling. Master the features and capabilities of Google Looker Studio for dashboard building. Learn to use a structured 3D approach - determine, design, and develop - for creating dashboards. Explore practical examples to apply your knowledge effectively in real projects. Gain insights into monitoring and measuring the impact of Looker Studio dashboards. Author(s) Sireesha Pulipati is an accomplished data analytics professional with extensive experience in business intelligence tools and data visualization. Leveraging her years of expertise, she has crafted this book to empower readers to effectively use Looker Studio. Sireesha's approachable teaching style and practical insights make complex concepts accessible to learners. Who is it for? This book is perfect for aspiring data analysts eager to master data visualization and dashboard design. It caters to beginners and requires no prior experience, making it a great starting point. Intermediate and seasoned professionals in analytics and business intelligence who are keen on using Looker Studio effectively will find immense value as well. If you aim to create insightful dashboards and refine your data storytelling skills, this book is for you.

The Book of Dash

A swift and practical introduction to building interactive data visualization apps in Python, known as dashboards. Youâ??ve seen dashboards before; think election result visualizations you can update in real time, or population maps you can filter by demographic. With the Python Dash library youâ??ll create analytic dashboards that present data in effective, usable, elegant ways in just a few lines of code. The book is fast-paced and caters to those entirely new to dashboards. It will talk you through the necessary software, then get straight into building the dashboards themselves. Youâ??ll learn the basic format of a Dash app by building a twitter analysis dashboard that maps the number of likes certain accounts gained over time. Youâ??ll build up skills through three more sophisticated projects. The first is a global analysis app that compares country data in three areas: the percentage of a population using the internet, percentage of parliament seats held by women, and CO2 emissions. Youâ??ll then build an investment portfolio dashboard, and an app that allows you to visualize and explore machine learning algorithms. In this book you will: â?¢Create and run your first Dash apps â?¢Use the pandas library to manipulate and analyze social media data â?¢Use Git to download and build on existing apps written by the pros â?¢Visualize machine learning models in your apps â?¢Create and manipulate statistical and scientific charts and maps using Plotly Dash combines several technologies to get you building dashboards quickly and efficiently. This book will do the same.

podcast_episode
by Santosh Kanthethy (EverBright (subsidiary of NextEra Energy Resources)) , Mico Yuk (Data Storytelling Academy)

Data plays a vital role in helping companies develop a competitive advantage, but it's the data evangelist who gathers and leverages those insights to help organizations understand the story their data is telling them. Today, on Analytics on Fire, we discuss how to become a data evangelist with data storyteller, leader, and lifelong learner, Santosh Kanthethy. At the time of recording this episode, Santosh was the IT Technology Manager for NextEra Energy Resources. Now, he is Head of Data Analytics and the leader of a growing internal data visualization community at EverBright, a solar financing solutions company and a subsidiary of NextEra. Tuning in, you'll gain step-by-step instructions for becoming a rockstar data evangelist , including three things to consider before you get started. We also take a look at the top functions of an internal data visualization community, how to get your executive team on board, and how to overcome some of the challenges that data evangelists are likely to encounter along the way. For actionable insights into how to build a thriving community, transform data culture from the inside out, and more, make sure not to miss this episode!   In this episode, you'll learn: [06:16] More about NextEra, one of America's largest capital investors in infrastructure. [07:10] Defining what a data evangelist is and how the internal data visualization community at NextEra was born. [08:48] Why Santosh decided to nurture and grow this community and switch from IT to data. [09:55] What the game of cricket taught Santosh about being a team leader. [13:55] Three things to consider before becoming a data evangelist: the maturity of your organization, your curiosity, and your ability to create content. [19:16] How often the data community meets and some of the topics that come up. [20:50] The three core selling points of a data community for your company: consistency better decision making, and relevance. [24:19] Tips for obtaining essential executive buy-in and support. [26:52] Becoming tool-agnostic: how to evangelize the benefits of the practice, not the tool. [29:34] A look at membership and how to determine who joins your data community. [31:40] KPIs, WIGs, and OKRs to measure the success of your community. [34:13] How data evangelists can overcome resistance while building a community. [36:20] What percentage of technology budgets should be allocated to community, change management, and upskilling. [38:50] How Santosh is inspired by the people he interacts with on a daily basis. [0:43:21] How Santosh can help you visualize your fitness data from Garmin or Strava! For full show notes, and the links mentioned visit: https://bibrainz.com/podcast/89   Enjoyed the Show?  Please leave us a review on iTunes.

How Charts Work: Understand and explain data with confidence

How Charts Work brings the secrets of effective data visualisation in a way that will help you bring data alive. Charts, graphs and tables are essential devices in business, but all too often they present information poorly. This book will help you: Feel confident understanding different types of charts, graphs and tables – and how to read them Recognise the true story behind the data presented and what the information really shows Know the principles and rules of how best to represent information so you can create your own information-driven (and beautiful) visuals Design visuals that people engage with, understand and act upon Don’t value design over information – present data persuasively. Find the FT Chart Doctor’s columns here - https://www.ft.com/chart-doctor

Data Conscience

DATA CONSCIENCE ALGORITHMIC S1EGE ON OUR HUM4N1TY EXPLORE HOW D4TA STRUCTURES C4N HELP OR H1NDER SOC1AL EQU1TY Data has enjoyed ‘bystander’ status as we’ve attempted to digitize responsibility and morality in tech. In fact, data’s importance should earn it a spot at the center of our thinking and strategy around building a better, more ethical world. It’s use—and misuse—lies at the heart of many of the racist, gendered, classist, and otherwise oppressive practices of modern tech. In Data Conscience: Algorithmic Siege on our Humanity, computer science and data inclusivity thought leader Dr. Brandeis Hill Marshall delivers a call to action for rebel tech leaders, who acknowledge and are prepared to address the current limitations of software development. In the book, Dr. Brandeis Hill Marshall discusses how the philosophy of “move fast and break things” is, itself, broken, and requires change. You’ll learn about the ways that discrimination rears its ugly head in the digital data space and how to address them with several known algorithms, including social network analysis, and linear regression A can’t-miss resource for junior-level to senior-level software developers who have gotten their hands dirty with at least a handful of significant software development projects, Data Conscience also provides readers with: Discussions of the importance of transparency Explorations of computational thinking in practice Strategies for encouraging accountability in tech Ways to avoid double-edged data visualization Schemes for governing data structures with law and algorithms

Functional Aesthetics for Data Visualization

What happens when a researcher and a practitioner spend hours crammed in a Fiat discussing data visualization? Beyond creating beautiful charts, they found greater richness in the craft as an integrated whole. Drawing from their unconventional backgrounds, these two women take readers through a journey around perception, semantics, and intent as the triad that influences visualization. This visually engaging book blends ideas from theory, academia, and practice to craft beautiful, yet meaningful visualizations and dashboards. How do you take your visualization skills to the next level? The book is perfect for analysts, research and data scientists, journalists, and business professionals. Functional Aesthetics for Data Visualization is also an indispensable resource for just about anyone curious about seeing and understanding data. Think of it as a coffee book for the data geek in you. https://www.functionalaestheticsbook.com

Understanding and interpreting data visualizations are one of the most important aspects of data literacy. When done well, data visualization ensures that stakeholders can quickly take away critical insights from data. Moreover, data visualization is often the best place to start when increasing organizational data literacy, as it’s often titled the “gateway drug” to more advanced data skills. Andy Cotgreave, Senior Data Evangelist at Tableau Software and co-author of The Big Book of Dashboards, joins the show to break down data visualization and storytelling, drawing from his 15-year career in the data space. Andy has spoken for events like SXSW, Visualized, and Tableau’s conferences and has inspired thousands of people to develop their data skills.

In this episode, we discuss why data visualization skills are so essential, how data visualization increases organizational data literacy, the best practices for visual storytelling, and much more.

This episode of DataFramed is a part of DataCamp’s Data Literacy Month, where we raise awareness about Data Literacy throughout September through webinars, workshops, and resources featuring thought leaders and subject matter experts that can help you build your data literacy, as well as your organization’s. For more information, visit: https://www.datacamp.com/data-literacy-month/for-teams

Data Literacy may be an important skill for everyone to have, but the level of need is always unique to each individual. Some may need advanced technical skills in machine learning algorithms, while others may just need to be able to understand the basics. Regardless of where anyone sits on the skills spectrum, the data community can help accelerate their careers.

There’s no one who knows that better than Kate Strachnyi. Kate is the Founder and Community Manager at DATAcated, a company that is focused on bringing data professionals together and helping data companies reach their target audience through effective content strategies.

Kate has created courses on data storytelling, dashboard and visualization best practices, and she is also the author of several books on data science, including a children’s book about data literacy. Through her professional accomplishments and her content efforts online, Kate has not only built a massive online following, she has also established herself as a leader in the data space.

In this episode, we talk about best practices in data visualization, the importance of technical skills and soft skills for data professionals, how to build a personal brand and overcome Imposter Syndrome, how data literacy can make or break organizations, and much more.

This episode of DataFramed is a part of DataCamp’s Data Literacy Month, where we raise awareness for Data Literacy throughout the month of September through webinars, workshops, and resources featuring thought leaders and subject matter experts that can help you build your data literacy, as well as your organization’s. For more information, visit: https://www.datacamp.com/data-literacy-month/for-teams

Learning Tableau 2022 - Fifth Edition

Learning Tableau 2022 is your comprehensive guide to mastering Tableau, one of the most popular tools for data visualization and analysis. Through this book, you will understand how to build impactful visualizations, create interactive dashboards, and tell compelling stories with data. With updated coverage of Tableau 2022's latest features, this book will take your data storytelling skills to the next level. What this Book will help me do Develop effective visualizations and dashboards to present complex data intuitively. Enhance data analysis with Tableau's advanced features like clustering, AI extensions, and Explain Data. Utilize calculations and parameters for tailoring and enriching analytics. Optimize workflows for data cleaning and preparation using Tableau Prep Builder. Confidently leverage Tableau for interlinking datasets and performing geospatial analysis. Author(s) Joshua N. Milligan, the author of Learning Tableau 2022, is a seasoned Tableau Zen Master. He has years of experience helping individuals and businesses transform their data into actionable insights through visualization and analysis. With a focus on clarity and practical applications, Joshua explains complex concepts in an approachable manner and equips readers with the skills to bring their ideas to life in Tableau. Who is it for? This book is ideal for business intelligence developers, data analysts, or any professional eager to improve their data visualization skills. Both beginners looking to understand Tableau from the ground up and intermediate users aiming to explore advanced Tableau techniques will find it valuable. A Tableau license and a thirst for learning are all you'll need to embark on this data visualization journey.

Getting Started with Grafana: Real-Time Dashboards for IT and Business Operations

Begin working with the Grafana data visualization platform. This book is a “how-to manual” for deploying and administering Grafana, creating real-time dashboards and alerts, exploring the data you have, and even synthesizing new data by combining and manipulating data from multiple different sources. You’ll be able to see and manage data on any scale, from your laptop or a Raspberry Pi to a production datacenter or even a multi-region cloud environment! Getting Started with Grafana takes a hands-on approach. You’ll learn by doing with easy-to-follow examples along with pointers to more resources to help you go deeper. The skills you’ll learn will help you provide business value by monitoring your operations in real time and reacting to changing circumstances as they occur. You’ll be able to derive new insights from your existing data through Grafana’s powerful and beautiful graphing capabilities, and you’ll be able to share your dashboards with colleagues soeveryone in your organization can benefit. What You Will Learn Connect to data "where it lives” and work with multiple sources of data Build beautiful and informative dashboards that show real-time status Deploy Grafana at any scale and manage it efficiently Integrate with other enterprise systems such as LDAP or Active Directory Automate creation and deployment of Grafana, dashboards, and alerts Understand what is available in the Enterprise version of Grafana Who This Book Is For Anyone who has data that they want to understand visually, IT professionals who work with multiple sources of data on a regular basis and need to make sense of the confusion that this data sprawl causes, and people who learn best by doing and want to get hands-on experience quickly with a project and then grow their knowledge

Today, I chat with Manav Misra, Chief Data and Analytics Officer at Regions Bank. I begin by asking Manav what it was like to come in and implement a user-focused mentality at Regions, driven by his experience in the software industry. Manav details his approach, which included developing a new data product partner role and using effective communication to gradually gain trust and cooperation from all the players on his team. 

Manav then talks about how, over time, he solidified a formal framework for his team to be trained to use this approach and how his hiring is influenced by a product orientation. We also discuss his definition of data product at Regions, which I find to be one of the best I’ve heard to date. Today, Region Bank’s data products are delivering tens of millions of dollars in additional revenue to the bank. Given those results, I also dig into the role of design and designers to better understand who is actually doing the designing of Regions’ data products to make them so successful. Later, I ask Manav what it’s like when designers and data professionals work on the same team and how UX and data visualization design are handled at the bank. 

Towards the end, Manav shares what he has learned from his time at Regions and what he would implement in a new organization if starting over. He also expounds on the importance of empowering his team to ask customers the right questions and how a true client/stakeholder partnership has led to Manav’s most successful data products.

Highlights / Skip to:

Brief history of decision science and how it influenced the way data science and analytics work has been done (and unfortunately still is in many orgs) (1:47) Manav’s philosophy and methods for changing the data science culture at Regions Bank to being product and user-driven (5:19) Manav talks about the size of his team and the data product role within the team as well as what he had to do to convince leadership to buy in to the necessity of the data product partner role (10:54) Quantifying and measuring the value of data products at Regions and some of his results (which include tens of millions of dollars in additional revenue) (13:05) What’s a “data product” at Regions? Manav shares his definition (13:44) Who does the designing of data products at Regions? (17:00) The challenges and benefits of having a team comprised of both designers and data scientists (20:10) Lessons Manav has learned from building his team and culture at Regions (23:09) How Manav coaches his team and gives them the confidence to ask the right questions (27:17) How true partnership has led to Manav’s most successful data products (31:46)

Quotes from Today’s Episode Re: how traditional, non-product oriented enterprises do data work: “As younger people come out of data science programs…that [old] culture is changing. The folks coming into this world now are looking to make an impact and then they want to see what this can do in the real world.” — Manav 

On the role of the Data Product Partner: “We brought in people that had both business knowledge as well as the technical knowledge, so with a combination of both they could talk to the ‘Internal customers,’ of our data products, but they could also talk to the data scientists and our developers and communicate in both directions in order to form that bridge between the two.” — Manav

“There are products that are delivering tens of millions of dollars in terms of additional revenue, or stopping fraud, or any of those kinds of things that the products are designed to address, they’re delivering and over-delivering on the business cases that we created.” — Manav 

“The way we define a data product is this: an end-to-end software solution to a problem that the business has. It leverages data and advanced analytics heavily in order to deliver that solution.” — Manav 

“The deployment and operationalization is simply part of the solution. They are not something that we do after; they’re something that we design in from the start of the solution.” — Brian 

“Design is a team sport. And even if you don’t have a titled designer doing the work, if someone is going to use the solution that you made, whether it’s a dashboard, or report, or an email, or notification, or an application, or whatever, there is a design, whether you put intention behind it or not.” — Brian

“As you look at interactive components in your data product, which are, you know, allowing people to ask questions and then get answers, you really have to think through what that interaction will look like, what’s the best way for them to get to the right answers and be able to use that in their decision-making.” — Manav 

“I have really instilled in my team that tools will come and go, technologies will come and go, [and so] you’ll have to have that mindset of constantly learning new things, being able to adapt and take on new ideas and incorporate them in how we do things.” — Manav

Links Regions Bank: https://www.regions.com/ LinkedIn: https://www.linkedin.com/in/manavmisra/