talk-data.com talk-data.com

Topic

MLOps

machine_learning devops ai

233

tagged

Activity Trend

26 peak/qtr
2020-Q1 2026-Q1

Activities

233 activities · Newest first

We talked about:

José's background How José relocated to Norway and his schedule Tech companies in Norway and José role Challenges of working as a remote data engineer José's newsletter on how to make use of data The process of making data useful Where José gets inspiration for his newsletter Dealing with burnout When in Norway, do as the Norwegians do The legalities of working remotely in Norway The benefits of working remotely

Links:

LinkedIn: https://www.linkedin.com/in/jmssalas Github: https://github.com/jmssalas Website & Newsletter: https://jmssalas.com

Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

Building an MLOps strategy from the ground up - Isabel Zimmerman, RStudio PBC | Crunch 2022

This talk was recorded at Crunch Conference 2022. Isabel from RStudio PBC spoke about building an MLOps strategy from the ground up.

"By the end of this talk, people will understand what the term MLOps entails, different options for deployment, and when different methods work best."

The event was organized by Crafthub.

You can watch the rest of the conference talks on our channel.

If you are interested in more speakers, tickets and details of the conference, check out our website: https://crunchconf.com/ If you are interested in more events from our company: https://crafthub.events/

We talked about:

Sandra's background Making a YouTube channel to break into the LLM space The business cases for LLMs LLMs as amplifiers The befits of keeping a human in the loop when using LLMs (AI limitations) Using LLMs as assistants Building an app that uses an LLM Prompt whisperers and how to improve your prompts Sandra's 7-day LLM experiment Sandra's LLM content recommendations Finding Sandra online

Links:

LinkedIn: https://www.linkedin.com/in/sandrakublik/ Twitter: https://twitter.com/sandra_kublik Youtube: https://www.youtube.com/@sandra_kublik

Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

We talked about:

Meryam's background The constant evolution of startups How Meryam became interested in LLMs What is an LLM (generative vs non-generative models)? Why LLMs are important Open source models vs API models What TitanML does How fine-tuning a model helps in LLM use cases Fine-tuning generative models How generative models change the landscape of human work How to adjust models over time Vector databases and LLMs How to choose an open source LLM or an API Measuring input data quality Meryam's resource recommendations

Links:

Website: https://www.titanml.co/ Beta docs: https://titanml.gitbook.io/iris-documentation/overview/guide-to-titanml... Using llama2.0 in TitanML Blog: https://medium.com/@TitanML/the-easiest-way-to-fine-tune-and-inference-llama-2-0-8d8900a57d57 Discord: https://discord.gg/83RmHTjZgf Meryem LinkedIn: https://www.linkedin.com/in/meryemarik/

Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

Sponsored by: Labelbox | Unlocking Enterprise AI with Your Proprietary Data and Foundation Models

We are starting to see a paradigm shift in how AI systems are built across enterprises. In 2023 and beyond, this shift is being propelled by the era of foundation models. Foundation models can be seen as the next evolution in using "pre-trained" models and transfer learning. In order to fully leverage these breakthrough models, we’ve seen a common formula for success: leading AI teams within enterprises need to be able successfully harness their own store of unstructured data and pair this with the right model in order to ship intelligent applications that deliver next-generation experiences to their customers.

In this session you will learn how to incorporate foundation models into your data and machine learning workflows so that anyone can build AI faster and, in many cases, get the business outcome without needing to build AI models altogether. Which foundation AI models can be used to pre-label / enrich data and what specific data pipeline (data engine) will enable this? Real-world use cases of when to incorporate large language models and fine-tuning to improve machine learning models in real-time. Discover the power of leveraging both Labelbox and Databricks to streamline this data management and model deployment process.

Talk by: Manu Sharma

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Sponsored: Gathr | Achieve 50x Faster Outcomes From Data at Scale - Using ML-Powered, No-Code Apps

Data Engineers love data and business users need outcomes. How do we cross the chasm? While there is no dearth of data in today’s world, managing and analyzing large datasets can be daunting. Additionally, data may lose its value over time. It needs to be analyzed and acted upon quickly, to accelerate decision-making, and help realize business outcomes faster. 

Take a deep dive into the future of the data economy and learn how to drive 50 times faster time to value. Hear from United Airlines how they leveraged Gathr to process massive volumes of complex digital interactions and operational data, to create breakthroughs in operations and customer experience, in real time.

The session will feature a live-demo, showcasing how enterprises from across domains leverage Gathr’s machine learning powered zero-code applications for ingestion, ETL, ML, XOps, Cloud Cost Control, Business Process Automation, and more – to accelerate their journey from data to outcomes, like never before.

Talk by: Sameer Bhide and Sarang Bapat

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksin

Large Language Models in Healthcare: Benchmarks, Applications, and Compliance

Large language models provide a leap in capabilities on understanding medical language and context - from passing the US medical licensing exam to summarizing clinical notes. They also suffer from a wide range of issues - hallucinations, robustness, privacy, bias – blocking many use cases. This session shares currently deployed software, lessons learned, and best practices that John Snow Labs has learned while enabling academic medical centers, pharmaceuticals, and health IT companies to build LLM-based solutions.

First, we cover benchmarks for new healthcare-specific large language models, showing how tuning LLM’s specifically on medical data and tasks results in higher accuracy on use cases such as question answering, information extraction, and summarization, compared to general-purpose LLM’s like GPT-4. Second, we share an architecture for medical chatbots that tackles issues of hallucinations, outdated content, privacy, and building a longitudinal view of patients. Third, we present a comprehensive solution for testing LLM’s beyond accuracy – for bias, fairness, representation, robustness, and toxicity – using the open-source nlptest library.

Talk by: David Talby

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Your LLM, Your Data, Your Infrastructure

Lamini, the most powerful LLM engine, is the platform for any and every software engineer to ship an LLM into production as rapidly and as easily as possible. In this session, learn how to train your LLM on your own data and infrastructure with a few lines of code using the Lamini library. Get early access to a playground to train any open-source LLM. With Lamini, your own LLM comes with better performance, better data privacy, lower cost, lower latency, and more.

Talk by: Sharon Zhou

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

D-Lite: Integrating a Lightweight ChatGPT-Like Model Based on Dolly into Organizational Workflows

DLite is a new instruction-following model developed by AI Squared by fine-tuning the smallest GPT-2 model on the Alpaca dataset. Despite having only 124 million parameters, DLite exhibits impressive ChatGPT-like interactivity and can be fine-tuned on a single T4 GPU for less than $15.00. Due to its small relative size, DLite can be run locally on a wide variety of compute environments, including laptop CPUs, and can be used without sending data to any third-party API. This lightweight property of DLite makes it highly accessible for personal use, empowering users to integrate machine learning models and advanced analytics into their workflows quickly, securely, and cost-effectively.

Leveraging DLite within AI Squared's platform can empower organizations to orchestrate the integration of Dolly/DLite into business workflows, creating personalized versions of Dolly/DLite, chaining models or analytics to contextualize Dolly/Dlite responses/prompts, and curating new datasets leveraging real-time feedback.

Talk by: Jacob Renn and Ian Sotnek

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

IFC's MALENA Provides Analytics for ESG Reviews in Emerging Markets Using NLP and LLMs

International Finance Corporation (IFC) is using data and AI to build machine learning solutions that create analytical capacity to support the review of ESG issues at scale. This includes natural language processing and requires entity recognition and other applications to support the work of IFC’s experts and other investors working in emerging markets. These algorithms are available via IFC’s Machine Learning ESG Analyst (MALENA) platform to enable rapid analysis, increase productivity, and build investor confidence. In this manner, IFC, a development finance institution with the mandate to address poverty in emerging markets, is making use of its historical datasets and open source AI solutions to build custom-AI applications that democratize access to ESG capacity to read and classify text.

In this session, you will learn the unique flexibility of the Apache Spark™ ecosystem from Databricks and how that has allowed IFC’s MALENA project to connect to scalable data lake storage, use different natural language processing models and seamlessly adopt MLOps.

Talk by: Atiyah Curmally and Blaise Sandwidi

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Evaluating LLM-based Applications

Evaluating LLM-based applications can feel like more of an art than a science. In this workshop, we'll give a hands-on introduction to evaluating language models. You'll come away with knowledge and tools you can use to evaluate your own applications, and answers to questions like:

  • Where do I get evaluation data from, anyway?
  • Is it possible to evaluate generative models in an automated way?
  • What metrics can I use?
  • What's the role of human evaluation?

Talk by: Josh Tobin

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Generative AI at Scale Using GAN and Stable Diffusion

Generative AI is under the spotlight and it has diverse applications but there are also many considerations when deploying a generative model at scale. This presentation will make a deep dive into multiple architectures and talk about optimization hacks for the sophisticated data pipelines that generative AI requires. The session will cover: - How to create and prepare a dataset for training at scale in single GPU and multi GPU environments. - How to optimize your data pipeline for training and inference in production considering the complex deep learning models that need to be run. - Tradeoff between higher quality outputs versus training time and resources and processing times.

Agenda: - Basic concepts in Generative AI: GAN networks and Stable Diffusion - Training and inference data pipelines - Industry applications and use cases

Talk by: Paula Martinez and Rodrigo Beceiro

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Testing Generative AI Models: What You Need to Know

Generative AI shows incredible promise for enterprise applications. The explosion of generative AI can be attributed to the convergence of several factors. Most significant is that the barrier to entry has dropped for AI application developers through customizable prompts (few-shot learning), enabling laypeople to generate high-quality content. The flexibility of models like ChatGPT and DALLE-2 have sparked curiosity and creativity about new applications that they can support. The number of tools will continue to grow in a manner similar to how AWS fueled app development. But excitement must be tampered by concerns about new risks imposed to business and society. Increased capability and adoption also increase risk exposure. As organizations explore creative boundaries of generative models, measures to reduce risk must be put in place. However, the enormous size of the input space and inherent complexity make this task more challenging than traditional ML models.

In this session, we summarize the new risks introduced by the new class of generative foundation models through several examples, and compare how these risks relate to the risks of mainstream discriminative models. Steps can be taken to reduce the operational risk, bias and fairness issues, and privacy and security of systems that leverage LLM for automation. We’ll explore model hallucinations, output evaluation, output bias, prompt injection, data leakage, stochasticity, and more. We’ll discuss some of the larger issues common to LLMs and show how to test for them. A comprehensive, test-based approach to generative AI development will help instill model integrity by proactively mitigating failure and the associated business risk.

Talk by: Yaron Singer

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Unleashing the Magic of Large Language Modeling with Dolly 2.0

As the field of artificial intelligence continues to advance at an unprecedented pace, LLMs are becoming increasingly powerful and transformative. LLMs use deep learning techniques to analyze vast amounts of text data, and can generate language that is like human language. These models have been used for a wide range of applications, including language translation, chatbots, text summarization, and more.

Dolly 2.0 is the first open-source, instruction-following LLM that has been fine-tuned on a human-generated instruction dataset – with zero chance of copyright implications. This makes it an ideal tool for research and commercial use, and opens up new possibilities for businesses looking to streamline their operations and enhance their customer service offerings.

In this session, we will provide an overview of Dolly 2.0, discuss its features and capabilities, and showcase its potential through a demo of Dolly in action. Attendees will gain insights into the LLMs, and learn how to maximize the impact of this cutting-edge technology in their organizations. By the end of the session, attendees will have a deep understanding of the capabilities of Dolly 2.0, and will be equipped with the knowledge they need to integrate LLMs into their own operations in order to achieve greater efficiency, productivity, and customer satisfaction.

Talk by: Gavita Regunath

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Feeding the World One Plant at a Time

Join this session to learn how the CVML and Data Platform team at BlueRiver Technology utilized Databricks to maximize savings on herbicide usage and revolutionize Precision Agriculture.

Blue River Technology is an agricultural technology company that uses computer vision and machine learning (CVML) to revolutionize the way crops are grown and harvested. BRT’s See & Spray technology, which uses CVML to identify and precisely determine whether the plant is a weed or a crop so it can deliver a small, targeted dose of herbicide directly to the plant, while leaving the crop unharmed. By using this approach, Blue River significantly reduces the amount of herbicides used in agriculture by over 70% and has a positive impact on the environment and human health.

The technical challenges we seek to overcome are:  - Processing massive petabytes of proprietary data at scale and in real time. Equipment in the field can generate up to 40TBs of data per hour per machine. - Aggregating, curating and visualizing at scale data can often be convoluted, error-prone and complex.  - Streamlining pipelines runs from weeks to hours to ensure continuous delivery of data.  - Abstracting and automating  the infra, deployment and data management from each program. - Building downstream data products based on descriptive analysis, predictive analysis or prescriptive analysis to drive the machine behavior.

The business questions we seek to answer for any machine are:  - Are we getting the spray savings we anticipated? - Are we reducing the use of herbicide at the scale we expected? - Are spraying nozzles performing at the expected rate? - Finding the relevant data to troubleshoot new edge conditions.  - Providing a simple interface for data exploration to both technical and non-technical personas to help improve our model. - Identifying repetitive and new faults in our machines. - Filtering out data based on certain incidents. - Identifying anomalies for e.g. sudden drop in spray saving, like frequency of broad spray suddenly is too high.

How we are addressing and plan to address these challenges: - Designating Databricks as our purposeful DB for all data - using the bronze, silver and gold layer standards. - Processing new machine logs using a Delta Live table as a source both in batch and incremental manner. - Democratize access for data scientists, product managers, data engineers who are not proficient with the robotic software stack via notebooks for quick development as well as real time dashboards.

Talk by: Fahad Khan and Naveed Farooqui

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksin

An API for Deep Learning Inferencing on Apache Spark™

Apache Spark is a popular distributed framework for big data processing. It is commonly used for ETL (extract, transform and load) across large datasets. Today, the transform stage can often include the application of deep learning models on the data. For example, common models can be used for classification of images, sentiment analysis of text, language translation, anomaly detection, and many other use cases. Applying these models within Spark can be done today with the combination of PySpark, Pandas_UDF, and a lot of glue code. Often, that glue code can be difficult to get right, because it requires expertise across multiple domains - deep learning frameworks, PySpark APIs, pandas_UDF internal behavior, and performance optimization.

In this session, we introduce a new, simplified API for deep learning inferencing on Spark, introduced in SPARK-40264 as a collaboration between NVIDIA and Databricks, which seeks to standardize and open source this glue code to make deep learning inference integrations easier for everyone. We discuss its design and demonstrate its usage across multiple deep learning frameworks and models.

Talk by: Lee Yang

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Building AI-Powered Products with Foundation Models

Foundation models make for fantastic demos, but in practice, they can be challenging to put into production. These models work well over datasets that match common training distributions (e.g., generating WEBTEXT or internet images), but may fail on domain-specific tasks or long-tail edge case; the settings that matter most to organizations building differentiated products. We propose a data-centric development approach that organizations can use to adapt foundation models to their own private/proprietary datasets.

We'll describe several techniques, including supervision "warmstarts" and interactive prompting (spoiler alert: no code needed). To make these techniques come to life, we'll walk through real case studies describing how we've seen data-centric development drive AI-powered products, from "AI assist" use cases (e.g., copywriting assistants) to "fully automated" solutions (e.g., loan processing engines).

Talk by: Vincent Chen

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

De-Risking Language Models for Faster Adoption

Language models are incredible engineering breakthroughs but require auditing and risk management before productization. These systems raise concerns about toxicity, transparency and reproducibility, intellectual property licensing and ownership, disinformation and misinformation, supply chains, and more. How can your organization leverage these new tools without taking on undue or unknown risks? While language models and associated risk management are in their infancy, a small number of best practices in governance and risk are starting to emerge. If you have a language model use case in mind, want to understand your risks, and do something about them, this presentation is for you! We'll be covering the following: 

  • Studying past incidents in the AI Incident Database and using this information to guide debugging.
  • Adhering to authoritative standards, like the NIST AI Risk Management Framework. 
  • Finding and fixing common data quality issues.
  • Applying general public tools and benchmarks as appropriate (e.g., BBQ, Winogender, TruthfulQA).
  • Binarizing specific tasks and debugging them using traditional model assessment and bias testing.
  • Engineering adversarial prompts with strategies like counterfactual reasoning, role-playing, and content exhaustion. 
  • Conducting random attacks: random sequences of attacks, prompts, or other tests that may evoke unexpected responses. 
  • Countering prompt injection attacks, auditing for backdoors and data poisoning, ensuring endpoints are protected with authentication and throttling, and analyzing third-party dependencies. 
  • Engaging stakeholders to help find problems system designers and developers cannot see. 
  • Everyone knows that generative AI is going to be huge. Don't let inadequate risk management ruin the party at your organization!

Talk by: Patrick Hall

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

Explainable Data Drift for NLP

Detecting data drift, although far from solved-for tabular data, has become a common approach to monitor ML models in production. For Natural Language Processing (NLP) on the other hand the question remains mostly open. In this session, we will present and compare two approaches. In the first approach, we will demonstrate how by extracting a wide range of explainable properties per document such as topics, language, sentiment, named entities, keywords and more we are able to explore potential sources of drift. We will show how these properties can be consistently tracked over time, how they can be used to detect meaningful data drift as soon as it occurs and how they can be used to explain and fix the root cause.

The second approach we will present is to detect drift by using the embeddings of common foundation models (such as GPT3 in the Open AI model family) and use them to identify areas in the embedding space in which significant drift has occurred. These areas in embedding space should then be characterized in a human-readable way to enable root cause analysis of the detected drift. We will compare the performance and explainability of these two methods and explore the pros and cons of each approach.

Talk by: Noam Bressler

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

How the Texas Rangers Revolutionized Baseball Analytics with a Modern Data Lakehouse

Don't miss this session where we demonstrate how the Texas Rangers baseball team organized their predictive models by using MLflow and the MLRegistry inside Databricks. They started using Databricks as a simple solution to centralizing our development on the cloud. This helped lessen the issue of siloed development in our team, and allowed us to leverage the benefits of distributed cloud computing.

But we quickly found that Databricks was a perfect solution to another problem that we faced in our data engineering stack. Specifically, cost, complexity, and scalability issues hampered our data architecture development for years, and we decided we needed to modernize our stack by migrating to a lakehouse. With Databricks Lakehouse, ad-hoc-analytics, ETL operations, and MLOps all living within Databricks, development at scale has never been easier for our team.

Going forward, we hope to fully eliminate the silos of development, and remove the disconnect between our analytics and data engineering teams. From computer vision, pose analytics, and player tracking, to pitch design, base stealing likelihood, and more, come see how the Texas Rangers are using innovative cloud technologies to create action-driven reports from the current sea of big data.

Talk by: Alexander Booth and Oliver Dykstra

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc