talk-data.com talk-data.com

Topic

Analytics

data_analysis insights metrics

103

tagged

Activity Trend

398 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: DataFramed ×

Snowflake has been foundational in the data space for years. In the mid-2010s, the platform was a major driver of moving data to the cloud. More recently, it's become apparent that combining data and AI in the cloud is key to accelerating innovation. Snowflake has been rapidly adding AI features to provide value to the modern data stack, but what’s really been going on under the hood? At the time of recording, Sridhar Ramaswamy was the SVP of AI at Snowflake, being appointed CEO at Snowflake in February 2024. Sridhar was formerly Co-Founder of Neeva, acquired in 2023 by Snowflake. Before founding Neeva, Ramaswamy oversaw Google's advertising products, including search, display, video advertising, analytics, shopping, payments, and travel. He joined Google in 2003 and was part of the growth of AdWords and Google's overall advertising business. He spent more than 15 years at Google, where he started as a software engineer and rose to SVP of Ads & Commerce.  In the episode, Richie and Sridhar explore Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, how NLP and AI have impacted enterprise business operations as well as new applications of AI in an enterprise environment, the challenges of enterprise search, the importance of data quality, management and the role of semantic layers in the effective use of AI, a look into Snowflakes products including Snowpilot and Cortex, the collaboration required for successful data and AI projects, advice for organizations looking to improve their data management and much more.     About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: SnowflakeSnowflake acquires Neeva to accelerate search in the Data Cloud through generative AIUse AI in Seconds with Snowflake Cortex[Course] Introduction to SnowflakeRelated Episode: Why AI will Change Everything—with Former Snowflake CEO, Bob MugliaSign up to a...

Databricks started out as a platform for using Spark, a big data analytics engine, but it's grown a lot since then. Databricks now allows users to leverage their data and AI projects in the same place, ensuring ease of use and consistency across operations. The Databricks platform is converging on the idea of data intelligence, but what does this mean, how will it help data teams and organizations, and where does AI fit in the picture? Ari is Databricks’ Head of Evangelism and "The Real Moneyball Guy" - the popular movie was partly based on his analytical innovations in Major League Baseball. He is a leading influencer in analytics, artificial intelligence, data science, and high-growth business innovation. Ari was previously the Global AI Evangelist at DataRobot, Nielsen’s regional VP of Analytics, Caltech Alumni of the Decade, President Emeritus of the worldwide Independent Oracle Users Group, on Intel’s AI Board of Advisors, Sports Illustrated Top Ten GM Candidate, an IBM Watson Celebrity Data Scientist, and on the Crain’s Chicago 40 Under 40. He's also written 5 books on analytics, databases, and baseball. Robin is the Field CTO at Databricks. She has consulted with hundreds of organizations on data strategy, data culture, and building diverse data teams. Robin has had an eclectic career path in technical and business functions with more than two decades in tech companies, including Microsoft and Databricks. She also has achieved multiple academic accomplishments from her juris doctorate to a masters in law to engineering leadership. From her first technical role as an entry-level consumer support engineer to her current role in the C-Suite, Robin supports creating an inclusive workplace and is the current co-chair of Women in Data Safety Committee. She was also recognized in 2023 as a Top 20 Women in Data and Tech, as well as DataIQ 100 Most Influential People in Data. In the episode, Richie, Ari, and Robin explore Databricks, the application of generative AI in improving services operations and providing data insights, data intelligence, and lakehouse technology, the wide-ranging applications of generative AI, how AI tools are changing data democratization, the challenges of data governance and management and how tools like Databricks can help, how jobs in data and AI are changing and much more.  About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: DatabricksDelta Lakea href="https://mlflow.org/" rel="noopener...

One of the biggest surprises of the generative AI revolution over the past 2 years lies in the counter-intuitiveness of its most successful use cases. Counter to most predictions made about AI years ago, AI-assisted coding, specifically AI-assisted data work, has been surprisingly one of the biggest killer apps of generative AI tools and copilots. However, what happens when we take this notion even further? How will analytics workflows look like when generative AI tools can also assist us in problem-solving? What type of analytics use cases can we expect to operationalize, and what tools can we expect to work with when AI systems can provide scalable qualitative data instead of relying on imperfect quantitative proxies? Today’s guest calls this future “weird”.  Benn Stancil is the Field CTO at ThoughtSpot. He joined ThoughtSpot in 2023 as part of its acquisition of Mode, where he was a Co-Founder and CTO. While at Mode, Benn held roles leading Mode’s data, product, marketing, and executive teams. He regularly writes about data and technology at benn.substack.com. Prior to founding Mode, Benn worked on analytics teams at Microsoft and Yammer. Throughout the episode, Benn and Adel talk about the nature of AI-assisted analytics workflows, the potential for generative AI in assisting problem-solving, how he imagines analytics workflows to look in the future, and a lot more.  About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: Mode AnalyticsThoughtSpot acquires Mode: Empowering data teams to bring Generative AI to BIEverybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are[Course] Generative AI for Business[Skill Track] SQL FundamentalsRelated Episode: The Future of Marketing Analytics with Cory Munchbach, CEO at...

We are in a Generative AI hype cycle. Every executive looking at the potential generative AI today is probably thinking about how they can allocate their department's budget to building some AI use cases. However, many of these use cases won't make it into production. In a similar vein, the hype around machine learning in the early 2010s led to lots of hype around the technology, but a lot of the value did not pan out. Four years ago, VentureBeat showed that 87% of data science projects did not make it into production. And in a lot of ways, things haven’t gotten much better. And if we don't learn why that is the case, generative AI could be destined to a similar fate.  Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI World, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, as well as The AI Playbook: Mastering the Rare Art of Machine Learning Deployment. Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching graduate computer science courses in ML and AI. Later, he served as a business school professor at UVA Darden. Eric also publishes op-eds on analytics and social justice. In the episode, Adel and Eric explore the reasons why machine learning projects don't make it into production, the BizML Framework or how to bring business stakeholders into the room when building machine learning use cases, the skill gap between business stakeholders and data practitioners, use cases of organizations have leveraged machine learning for operational improvements, what the previous machine learning hype cycle can teach us about generative AI and a lot more.  Links Mentioned in the Show: The AI Playbook: Mastering the Rare Art of Machine Learning Deployment by Eric SiegelGenerating ROI with AIBizML Cheat SheetGooderSurvey: Machine Learning Projects Still Routinely Fail to Deploy[Skill Track] MLOps Fundamentals

We don’t think about every decision we make. Some decisions are easy and intuitive, others can be riddled with doubt. In a business setting, decision-making is often crucial, and with that comes pressure to ensure we’re making the right decisions in the best way possible. We can often accompany decision-making with context, providing a narrative for how we might approach a decision, citing what data and insights have had significant input into our choices. But how do we approach storytelling and decision-making to breed success? There’s probably no better person to guide us through the ins and outs of decision-making than the co-author of Business Storytelling For Dummies. Lori L. Silverman is the owner of Partners for Progress, a management consulting firm. As a business strategist, she has consulted with organizations in fifteen industries including financial services, insurance, manufacturing and petroleum companies, government entities, and professional associations. As a keynote speaker, Lori has positively impacted the lives of thousands of people. She has appeared on over fifty radio and television shows to speak about using stories in the workplace and is the co-author of Critical SHIFT and Stories Trainers Tell.  She’s a pioneer in the business storytelling field, author of five books, and is known worldwide for her work in collaborative data-informed decision-making. In the episode, Richie and Lori cover common problems in business decision-making, connecting decision-making to business processes, analytics and decision-making, integrating data practitioners and decision-makers, the role of data visualization and narrative storytelling, the SMARTER decision-making methodology, the importance of intuition, challenges faced when applying decision-making methodologies and much more.  Links Mentioned in the Show Business Storytelling For Dummies by Karen Dietz and Lori SilvermanConnect with Lori on LinkedinLevel Up with LoriBooks by LoriThe SMARTER Framework for Data-Informed Decision MakingMonetizing Data Through Informed, Collaborative Decision MakingThe Increasingly Vital Role of Business Storytelling in LeadershipPre-Suasion: A Revolutionary Way to Influence and Persuade by Robert Cialdini[Skill Track] Data Storytelling

Cookies were invented to help online shoppers, simply as an identifier so that online carts weren’t lost to the ether. Marketers quickly saw the power of using cookies for more than just maintaining session states, and moved to use them as part of their targeted advertising. Before we knew it, our online habits were being tracked, without our clear consent. The unregulated cookie-boom lasted until 2018 with the advent of GDPR and the CCPA. Since then marketers have been evolving their practices, looking for alternatives to cookie-tracking that will perform comparatively, and with the cookie being phased out in 2024, technologies like fingerprinting and new privacy-centric marketing strategies will play a huge role in how products meet users in the future.  Cory Munchbach has spent her career on the cutting edge of marketing technology and brings years working with Fortune 500 clients from various industries to BlueConic. Prior to BluConic, she was an analyst at Forrester Research where she covered business and consumer technology trends and the fast-moving marketing tech landscape. A sought-after speaker and industry voice, Cory’s work has been featured in Financial Times, Forbes, Raconteur, AdExchanger, The Drum, Venture Beat, Wired, AdAge, and Adweek. A life-long Bostonian, Cory has a bachelor’s degree in political science from Boston College and spends a considerable amount of her non-work hours on various volunteer and philanthropic initiatives in the greater Boston community.  In the episode, Richie and Cory cover successful marketing strategies and their use of data, the types of data used in marketing, how data is leveraged during different stages of the customer life cycle, the impact of privacy laws on data collection and marketing strategies, tips on how to use customer data while protecting privacy and adhering to regulations, the importance of data skills in marketing, the future of marketing analytics and much more. Links Mentioned in the Show: BlueConicMattel CreationsGoogle: Prepare for third-party cookie restrictionsData Clean Rooms[Course] Marketing Analytics for Business

Your data project doesn't end once you have results. In order to have impact, you need to communicate those results to others. Presentations filled with endless tables and technical jargon can easily become tedious, leading your audience to lose interest or misunderstand your point. Data storytelling provides a solution to this: by creating a narrative around your results you can increase engagement and understanding from your audience. This is an art, and there are so many factors that contribute to visualizing data and creating a compelling story, it can be overwhelming. However, with the right approach, creating data stories can become second nature. In this special episode of DataFramed, we join forces with the Present Beyond Measure podcast to glean the best data presentation practices from one of the leading voices in the space. Lea Pica host of the Founder and Host of the Present Beyond Measure podcast and is a seasoned digital analytics practitioner, social media marketer and blogger with over 11 years of experience building search marketing and digital analytics practices for companies like Scholastic, Victoria’s Secret and Prudential. Present Beyond Measure’s mission is to bring their teachings to the digital marketing and web analytics communities, and empower anyone responsible for presenting data to an audience. In the full episode, Richie and Lea cover the full picture of data presentation, how to understand your audience, leverage hollywood storytelling, data storyboarding and visualization, the use of imagery in presentations, cognitive load management, the use of throughlines in presentations, how to improve your speaking and engagement skills, data visualization techniques in business setting and much more.  Links Mentioned in the Show: Present Beyond MeasureLea’s BookConnect with Lea on LinkedinHollywood Storytelling[Course] Data Storytelling Concepts

Regardless of profession, the work we do leaves behind a trace of actions that help us achieve our goals. This is especially true for those that work with data. For large enterprises where there are seemingly countless processes happening at any one time, keeping track of these processes is crucial. Given the scale of these processes, one small efficiency gain can leads to a staggering amount of time and money saved. Process mining is a data-driven approach to process analysis that uses event logs to extract process-related information. It can separate inferred facts, from exact truths, and uncover what really happens in a variety of operations.  Wil van der Aalst is a full professor at RWTH Aachen University, leading the Process and Data Science (PADS) group. He is also the Chief Scientist at Celonis, part-time affiliated with the Fraunhofer FIT, and a member of the Board of Governors of Tilburg University.  His research interests include process mining, Petri nets, business process management, workflow management, process modeling, and process analysis. Wil van der Aalst has published over 275 journal papers, 35 books (as author or editor), 630 refereed conference/workshop publications, and 85 book chapters. Cong Yu leads the CeloAI group at Celonis focusing on bringing advanced AI technologies to EMS products, building up capabilities for their knowledge platform, and ultimately helping enterprises in reducing process inefficiencies and achieving operational excellence. Previously, Cong was Principal (Research) Scientist / Research Director at Google Research NYC from September 2010 to July 2022, leading the NYSD/Beacon Research Group, and also taught at NYU Courant Institute of Mathematical Sciences.  In the episode, Wil, Cong, and Richie explore process mining and its development over the past 25 years, the differences between process mining and ML, AI, and data mining, popular use cases of process mining, adoption from large enterprises like BMW, HP, and Dell, the requirements for an effective process mining system, the role of predictive analytics and data engineering in process mining, how to scale process mining systems, prospects within the field and much more. Links Mentioned in the Show: CelonisGartner’s Magic Quadrant for Process MiningPM4PyProcess Query Language (PQL)[Couse] Business Process Analytics in R

Throughout the past year, we've seen AI go from a nice-to-have, to a must-have in almost every large organization’s boardroom. There’s been more and more focus deploy AI  by leadership teams, and as a result, there's never been more pressure on the data team to deliver with AI. However, as the pressure to deliver with AI grows, the need to build safe and trustworthy experiences has also never been more important. But how do we balance between innovation and building these trustworthy experiences? How do you make responsible AI practical? Who should we get into the room when scoping safe AI use-cases?  Beena Ammanath is an award- winning senior technology executive with extensive experience in AI and digital transformation. Her career has spanned leadership roles in e-commerce, finance, marketing, telecom, retail, software products, service, and industrial domains. She is also the author of the ground breaking book, Trustworthy AI. Beena currently leads the Global Deloitte AI Institute and Trustworthy AI/ Ethical Technology at Deloitte. Prior to this, she was the CTO-AI at Hewlett Packard Enterprise. A champion for women and multicultural inclusion in technology and business, Beena founded Humans for AI, a 501c3b non-profit promoting diversity and inclusion in AI. Her work and contributions have been acknowledged with numerous awards and recognition such as 2016 Women Super Achiever Award from World Women’s Leadership Congress and induction into WITI’s 2017 Women in Technology Hall of Fame. Beena was honored by UC Berkeley as 2018 Woman of the Year for Business Analytics, by the San Francisco Business Times as one of the 2017 Most Influential Women in Bay Area and by the National Diversity Council as one of the Top 50 Multicultural Leaders in Tech. In the episode, Beena and Adel delve into the core principles of trustworthy AI, the interplay of ethics and AI in various industries, how to make trustworthy AI practical, who are the primary stakeholders for ensuring trustworthy AI, the importance of AI literacy when promoting responsible and trustworthy AI, and a lot more. Links mentioned in the Show Trustworthy AI by Beena AmmanathDeloitte AI InstituteHumans for AIData Literacy by Design, with Valerie Logan, CEO of the Data Lodge[Course] Implementing AI Solutions in Business[Webinar - October 19th 2023] Building a Capability Roadmap for AI

For the past few years, we've seen the importance of data literacy and why organizations must invest in a data-driven culture, mindset, and skillset. However, as generative AI tools like ChatGPT have risen to prominence in the past year, AI literacy has never been more important. But how do we begin to approach AI literacy? Is it an extension of data literacy, a complement, or a new paradigm altogether? How should you get started on your AI literacy ambitions?  Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is a data analytics, AI, and BI thought leader and an expert with a flair for bridging business needs with technology. As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.

Cindi was previously a Gartner Research Vice President, the lead author for the data and analytics maturity model and analytics and BI Magic Quadrant, and a popular keynote speaker. She introduced new research in data and AI for good, NLP/BI Search, and augmented analytics, bringing both BI bake-offs and innovation panels to Gartner globally. She’s frequently quoted in MIT, Harvard Business Review, and Information Week. She is rated a top 12 influencer in big data and analytics by Analytics Insight, Onalytca, Solutions Review, and Humans of Data.

In the episode, Cindi and Adel discuss how generative AI accelerates an organization’s data literacy, how leaders can think beyond data literacy and start to think about AI literacy, the importance of responsible use of AI, how to best communicate the value of AI within your organization, what generative AI means for data teams, AI use-cases in the data space, the psychological barriers blocking AI adoption, and much more. 

Links Mentioned in the Show: The Data Chief Podcast  ThoughtSpot Sage  BloombergGPT  Radar: Data & AI Literacy Course: AI Ethics  Course: Generative AI Concepts Course: Implementing AI Solutions in Business 

As companies scale and become more successful, new horizons open, but with them come unexpected challenges. The influx of revenue and expansion of operations often reveal hidden complexities that can hinder efficiency and inflate costs. In this tricky situation, data teams can find themselves entangled in a web of obstacles that slow down their ability to innovate and respond to ever-changing business needs. Enter cloud analytics—a transformative solution that promises to break down barriers and unleash potential. By migrating analytics to the cloud, organizations can navigate the growing pains of success, cutting costs, enhancing flexibility, and empowering data teams to work with agility and precision. John Knieriemen is the Regional Business Lead for North America at Exasol, the market-leading high-performance analytics database. Prior to joining Exasol, he served as Vice President and General Manager at Teradata during an 11-year tenure with the company. John is responsible for strategically scaling Exasol’s North America business presence across industries and expanding the organization’s partner network.  Solongo Erdenekhuyag is the former Customer Success and Data Strategy Leader at Exasol. Solongo is skilled in strategy, business development, program management, leadership, strategic partnerships, and management. In the episode, Richie, Solongo, and John cover the motivation for moving analytics to the cloud, economic triggers for migration, success stories from organizations who have migrated to the cloud, the challenges and potential roadblocks in migration, the importance of flexibility and open-mindedness and much more.  Links from the Show ExasolAmazon S3Azure Blob StorageGoogle Cloud StorageBigQueryAmazon RedshiftSnowflake[Course] Understanding Cloud Computing[Course] AWS Cloud Concepts

Generative AI is here to stay—even in the 8 months since the public release of ChatGPT, there are an abundance of AI tools to help make us more productive at work and ease the stress of planning and execution of our daily lives among other things.  Already, many of us are wondering what is to come in the next 8 months, the next year, and the next decade of AI’s evolution. In the grand scheme of things, this really is just the beginning. But what should we expect in this Cambrian explosion of technology? What are the use cases being developed behind the scenes? What do we need to be mindful of when training the next generations of AI? Can we combine multiple LLMs to get better results? Bal Heroor is CEO and Principal at Mactores and has led over 150 business transformations driven by analytics and cutting-edge technology. His team at Mactores are researching and building AI, AR/VR, and Quantum computing solutions for business to gain a competitive advantage. Bal is also the Co-Founder of Aedeon—the first hyper-scale Marketplace for Data Analytics and AI talent. In the episode, Richie and Bal explore common use cases for generative AI, how it's evolving to solve enterprise problems, challenges of data governance and the importance of explainable AI, the challenges of tracking the lineage of AI and data in large organizations. Bal also touches on the shift from general-purpose generative AI models to more specialized models, fascinating use cases in the manufacturing industry, what to consider when adopting AI solutions in business, and much more. Links mentioned in the show: PulsarTrifactaAWS Clarify[Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business[Course] Generative AI Concepts

Every year we become increasingly aware of the urgency of the climate crisis, and with that, the need to usher in renewable energies and scale their adoption has never been more important. However, as we look at the ways to scale the adoption of renewable energy, data stands out as a key lever to accelerate a greener future.  Today’s guest is Jean-Pierre Pélicier, CDO at ENGIE. ENGIE is one of the largest energy producers in the world and definitely one of the largest in Europe. They operate in more than 48 countries and have committed to becoming carbon neutral by 2045. Data plays a crucial part in these plans. In the episode, Jean-Pierre shares his unique perspective on how data is not just transforming the renewable energy industry but also redefining the way we approach the climate crisis. From harnessing the power of data to optimize energy production and distribution to leveraging advanced analytics to predict and mitigate environmental impacts, Jean-Pierre highlights the ways data continues to be an invaluable tool in our quest for a sustainable future. Also discussed in the episode are the challenges of data collection and quality in the energy sector, the importance of fostering a data culture within an organization, and aligning data strategy with a company's strategic objectives.

About 10 years ago, Thomas Davenport & DJ Patil published the article "Data Scientist: The Sexiest Job of the 21st Century" in the Harvard Business Review. In this piece, they described the bourgeoning role of the data scientist and what it will mean for organizations and individuals in the coming decade. As time has passed, data science has become increasingly institutionalized. Once seen as a luxury, it is now deemed a necessity in every modern boardroom. Moreover as technologies like AI and systems like ChatGPT keep astonishing us with their capabilities in handling data science tasks, it raises a pertinent question: Is Data Science Still the Sexiest Job of the 21st Century? In this episode, we invited Thomas Davenport on the show to share his perspective on where data science & AI are at today, and where they are headed. Thomas Davenport is the President’s Distinguished Professor of Information Technology and Management at Babson College, the co-founder of the International Institute for Analytics, a Fellow of the MIT Initiative for the Digital Economy, and a Senior Advisor to Deloitte Analytics. He has written or edited twenty books and over 250 print or digital articles for Harvard Business Review (HBR), Sloan Management Review, the Financial Times, and many other publications. One of HBR’s most frequently published authors, Thomas has been at the forefront of the Process Innovation, Knowledge Management, and Analytics and Big Data movements. He pioneered the concept of “competing on analytics” with his 2006 Harvard Business Review article and his 2007 book by the same name. Since then, he has continued to provide cutting-edge insights on how companies can use analytics and big data to their advantage, and then on artificial intelligence. Throughout the episode, we discuss how data science has changed since he first published his article, how it has become more institutionalized, how data leaders can drive value with data science, the importance of data culture, his views on AI and where he thinks its going, and a lot more. Links from the Show: Working with AI by Thomas Davenport The AI Advantage: How to Put the Artificial Intelligence Revolution to Work by Thomas Davenport Harvard Business Review New Vantage Partners CCC Intelligent Solutions Radar AI

Historically in elite team sports, there has often been a dynamic between players and their inherent abilities, and the vision of the coach. In many sports, we’ve seen coaching strategies influence the future of how the game is played. As the era of professionalism swept across many elite sports in the 90s, we saw the highest-level sports teams achieve a competitive edge by looking at the data, with sports fans often noticing a difference in the ‘feel’ of the way their team plays. In Basketball specifically, we have recently seen the rise of the 3-pointer, a riskier and much more difficult shot to accurately hit, even for professional players. But what has driven the rise of the 3-pointer? Is it another trend among coaches, or does the answer lie with data-based insights and the analysts producing these insights? Seth Partnow is the Director of North American Sports at StatsBomb, where he previously served as their Director of Basketball Analytics. Prior to joining StatsBomb in 2021, Seth was the Director of Basketball Research for the Milwaukee Bucks basketball team. Seth is also an accomplished Analyst and Author, having worked as an NBA Analyst for The Athletic since 2019 and having published his own book on basketball analytics, The Midrange Theory. Seth’s knowledge and insight bridges the gap between data analytics and elite US sport.  In the episode, Seth and Richie look into the intricate dynamics of elite basketball. Seth explores the challenges of attributing individual contributions in a sport where the outcome is significantly influenced by the complex interplay between players. Drawing from his extensive experience in the field, Seth discusses the complexities of analyzing player performance, the nuances of determining why certain players get easier or harder shots, and the difficulty of attributing credit for defensive achievements to individual players. Seth provides a comprehensive overview of the various roles within sports analytics, from data engineers to analysts, and highlights the importance of finding one's niche within these roles, particularly in the context of elite basketball. Seth also shares his personal journey into basketball analytics, offering valuable insights and advice for those interested in pursuing a career in this field, stressing the importance of introspection and understanding the unique lifestyle associated with working for a sports team, while also offering industry-agnostic advice on how to approach analyzing and using data in any context.

In the realm of Applied Intelligence, Accenture leads the way in harnessing the power of data and AI to transform industries. From consumer products to life sciences, retail, and aerospace, Accenture's influence is far-reaching. But what drives the organization? How does it navigate the complex landscape of data modernization and transformation? And more importantly, how does it leverage technology not just as an enabler, but as a catalyst for innovation?  Tracy Ring leads Accenture’s Applied Intelligence Products Category Group, in this role she has leadership across Consumer and Industrial Products, Automotive, Life Sciences, Retail and Aerospace and Defense. As the CDO and Global Generative AI lead for Life Sciences, she personally anchors the NA Applied Intelligence Life Sciences practice of more than 500 practitioners. Tracy has created solutions for Generative AI, Data led transformation, Artificial Intelligence, Data and Cloud Modernization, Analytics, and the organization and operating model strategies for next-generation adoption and AI fluency.  In the episode, Tracy initially clarifies the difference between data modernization and data transformation, highlighting their distinct meanings and why the terms aren’t interchangeable.  Tracy also emphasizes the importance of involving business end-users from the outset of data projects as well as advocating for a product-oriented approach to data. The discussion also covers the topic of team diversity and inclusivity. Tracy shares practical advice on how to build diverse teams and create an environment that encourages curiosity and open dialogue. Tracy also shares her perspective on the future of work and the importance of fostering meaningful conversations in the workplace. She advocates for an attitude of infinite curiosity within teams. In the context of life sciences, Tracy highlights the high stakes involved and underscores the need for responsible AI, data sharing, and data privacy. She also points out that the challenges in this field are more similar than dissimilar to those in other industries. Tune in for a wealth of insights from a seasoned leader in the field of Applied Intelligence.

Ofcom is the government-approved regulatory and competition authority for the broadcasting, telecommunications and postal industries of the United Kingdom. It plays a vital role in ensuring TV, radio and telecoms work as they should. With vast swathes of information from a wide range of sources, data plays a huge role in the way Ofcom operates - in this episode, we learn the key drivers of Ofcom’s data strategy.  Richard Davis is the Chief Data Officer at Ofcom, responsible for enabling data and analytics capabilities across the organisation. Prior to Ofcom, Richard worked as a Quantitative Analyst as well as being the former Head of Analytics and Innovation at LLoyds Bank, proving he has a wealth of experience across a variety of data roles.  After joining Ofcom in 2022, Richard describes his experience of joining Ofcom, his ambition to bring in new processes, and how he leverages the community of data professionals. Richard also shares his advice for a new data leader, which includes understanding the pain points of the team, making insights more efficient, and keeping data teams aligned with the business's needs. He also elaborates on the key components of the data strategy at Ofcom, including aligning to good data, good people, and good decisions.

Also discussed is the importance of cultural change in an organization and how to upskill data experts and train non-data specialists in data literacy, the difference between technical experts and people managers, and how organizations can enable people to grow to become technical leaders. Finally, Richard emphasizes the importance of evidence-based regulation, and how data literacy supports effective output. Richard provides excellent insight into the world of regulatory data, the challenges faced by Ofcom, and the solutions they can implement to overcome them.

podcast_episode
by Vijay Yadav (Center for Mathematical Sciences at Merck) , Vanessa Gonzalez (Transamerica)

In 2023, businesses are relying more heavily on data science and analytics teams than ever before. However, simply having a team of talented individuals is not enough to guarantee success.  In the last of our RADAR 2023 sessions, Vijay Yadav and Vanessa Gonzalez will outline the keys to building high-impact data teams in 2023. They will discuss what are the hallmarks of a high-performing data team, the importance of diversity of background and skillset needed to build impactful data teams, setting up career pathways for data scientists, and more. Vijay Yadav is a highly respected data and analytics thought leader with over 20 years of experience in data product development, data engineering, and advanced analytics. As Director of Quantitative Sciences - Digital, Data, and Analytics at Merck, he leads data & analytics teams in creating AI/ML-driven data products to drive digital transformation. Vijay has held numerous leadership positions at various companies and is known for his ability to lead global teams to achieve high-impact results.  Vanessa Gonzalez is the Sr. Director of Data Science and Innovation at Businessolver where she leads the Computational Linguistics, Machine Learning Engineering, Data Science, BI Analytics, and BI Engineering teams. She is experienced in leading data transformations, performing analytical and management functions that contribute to the goals and growth objectives of organizations and divisions.  Listen in as Vanessa and Vijay share how to enable data teams to flourish in an ever-evolving data landscape. 

An effective data strategy is one that combines a variety of levers such as infrastructure, tools, organization, processes, and more. Arguably however, the most important aspect of a vibrant data strategy is culture and people. In the third of our four RADAR 2023 sessions, Cindi Howson and Valerie Logan discuss how data leaders can create a data strategy that puts their people at the center. Learn key insights into how to drive effective change management for data culture, how to drive adoption of data within the organization, common pitfalls when executing on a data strategy, and more.  Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is an analytics and BI thought leader and expert with a flair for bridging business needs with technology.  As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.  Valerie Logan is the Founder and CEO of The Data Lodge. Valerie is committed to data literacy, she believes that in today's digital society, data literacy is a life skill. With advisory services, bootcamps, a resource library and community services at The Data Lodge, Valerie is certifying the world’s first Data Literacy Program Leads and pioneering the path forward in cracking the data culture code. In 2018, she was awarded Gartner’s Top Thought Leadership Award for her leadership in the area of Data Literacy. Listen in as Cindi and Valerie share how to build a data strategy that puts people first in an enterprise organization.

As organizations and the economy at large look to weather the challenges of 2023, data literacy is one of the keys to empowering organizations to navigate the decade's most significant challenges with confidence.  In the second of our four RADAR 2023 sessions, Jordan Morrow shares how to navigate the future with data literacy, and how organizations can thrive as data becomes ever more prominent. Jordan is known as the "Godfather of Data Literacy", having helped pioneer the field by building one of the world's first data literacy programs and driving thought leadership on the subject. Jordan is Vice President and Head of Data And Analytics at BrainStorm, Inc., and a global trailblazer in the world of data literacy, building the world's first full scale data literacy program. He served as the Chair of the Advisory Board for The Data Literacy Project, has spoken at numerous conferences around the world and is an active voice in the data and analytics community. He has also helped companies and organizations around the world, including the United Nations, build and understand data literacy. Listen in as Jordan outlines how and why data literacy can help build individual and organizational resilience, how to scale data literacy within your organization, and more.