talk-data.com talk-data.com

Topic

data-science-tasks

794

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Random Number Generators—Principles and Practices

Random Number Generators, Principles and Practices has been written for programmers, hardware engineers, and sophisticated hobbyists interested in understanding random numbers generators and gaining the tools necessary to work with random number generators with confidence and knowledge. Using an approach that employs clear diagrams and running code examples rather than excessive mathematics, random number related topics such as entropy estimation, entropy extraction, entropy sources, PRNGs, randomness testing, distribution generation, and many others are exposed and demystified. If you have ever Wondered how to test if data is really random Needed to measure the randomness of data in real time as it is generated Wondered how to get randomness into your programs Wondered whether or not a random number generator is trustworthy Wanted to be able to choose between random number generator solutions Needed to turn uniform random data into a different distribution Needed to ensure the random numbers from your computer will work for your cryptographic application Wanted to combine more than one random number generator to increase reliability or security Wanted to get random numbers in a floating point format Needed to verify that a random number generator meets the requirements of a published standard like SP800-90 or AIS 31 Needed to choose between an LCG, PCG or XorShift algorithm Then this might be the book for you.

Displaying Time Series, Spatial, and Space-Time Data with R, 2nd Edition

This book will provide methods to display space-time data using R. The code of each method will be detailed and commented through practical examples with real data. The second edition will discuss new interactive R packages and Add introductory sections with easier examples to show the basics of the most important packages and functions.

Nonlinear Digital Filtering with Python

This book discusses important structural filter classes including the median filter and a number of its extensions (e.g., weighted and recursive median filters), and Volterra filters based on polynomial nonlinearities. Using results from algebra and the theory of functional equations to construct and characterize behaviorally defined nonlinear filter classes, the text first introduces Python programming, and then proposes practical, bottom-up strategies for designing more complex and capable filters from simpler components in a way that preserves the key properties of these components.

Nonlinear Systems Stability Analysis

Using a Lyapunov-based approach, this book introduces advanced tools for the stability analysis of nonlinear systems. It first discusses standard stability techniques and their shortcomings and then introduces recent developments in stability analysis that can improve the applicability of standard techniques. Finally, the book proposes the stability analysis of special classes of nonlinear systems. Coverage includes the stability of ordinary time-invariant differential equations and time-invariant systems as well as the stability analysis of time-delayed systems and fuzzy linguistic systems models.

Hands-On Dashboard Development with Shiny

"Hands-On Dashboard Development with Shiny" provides a focused and practical guide for developing polished and professional dashboards using R and the Shiny framework. Through applied examples, you'll explore techniques in HTML, CSS, and Bootstrap to elevate your Shiny apps' interface and functionality. The book ensures a comprehensive learning experience by focusing on creating custom interfaces and layouts. What this Book will help me do Create Shiny interfaces using pure HTML to achieve full customization Enhance your R Shiny dashboards with powerful layout functions for professional designs Utilize Bootstrap themes in Shiny for consistent and aesthetically pleasing interfaces Generate interactive dashboards complete with icons and notification elements Develop and distribute R Markdown reports directly from Shiny applications Author(s) Chris Beeley is an experienced data scientist and a frequent R Shiny practitioner. With years of experience building Shiny applications and working on data visualization in professional settings, Chris brings practical and precise teaching to this book. He is passionate about making knowledge accessible and guiding learners through hands-on and engaging content. Who is it for? This book is ideally suited for developers and data analysts who have prior experience with Shiny and wish to delve deeper into customizing their applications' design. If you want to extend your Shiny apps using HTML, CSS, and layouts via Bootstrap, this book is perfect for you. It equips you with the skills to build advanced dashboards efficiently. Whether you're looking to create more visually appealing apps or enhance your UI skills, this resource caters to your needs.

Robust Nonlinear Regression

The first book to discuss robust aspects of nonlinear regression—with applications using R software Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression Addresses some commonly mishandled aspects of modeling R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.

Mastering Kibana 6.x

Mastering Kibana 6.x is your guide to leveraging Kibana for creating impactful data visualizations and insightful dashboards. From setting up basic visualizations to exploring advanced analytics and machine learning integrations, this book equips you with the necessary skills to dive deep into your data and gain actionable insights at scale. You'll also learn to effectively manage and monitor data with powerful tools such as X-Pack and Beats. What this Book will help me do Build sophisticated dashboards to visualize elastic stack data effectively. Understand and utilize Timelion expressions for analyzing time series data. Incorporate X-Pack capabilities to enhance security and monitoring in Kibana. Extract, analyze, and visualize data from Elasticsearch for advanced analytics. Set up monitoring and alerting using Beats components for reliable data operations. Author(s) With extensive experience in big data technologies, the author brings a practical approach to teaching advanced Kibana topics. Having worked on real-world data analytics projects, their aim is to make complex concepts accessible while showing how to tackle analytics challenges using Kibana. Who is it for? This book is ideal for data engineers, DevOps professionals, and data scientists who want to optimize large-scale data visualizations. If you're looking to manage Elasticsearch data through insightful dashboards and visual analytics, or enhance your data operations with features like machine learning, then this book is perfect for you. A basic understanding of the Elastic Stack is helpful, though not required.

Sparse Optimization Theory and Methods

This book presents the state-of-the-art in theory and algorithms for signal recovery under the sparsity assumption. The unique conditions for the sparsest solution of underdetermined linear systems are described, and the results for sparse signal recovery under the range space property (RSP) are introduced. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms are presented, and theoretical efficiency of these algorithms are rigorously analysed. Under the RSP assumption, the author also provides a unified stability analysis for several popular optimization methods for sparse signal recovery.

Python Graphics: A Reference for Creating 2D and 3D Images

This book will show you how to use Python to create graphic objects for technical illustrations and data visualization. Often, the function you need to produce the image you want cannot be found in a standard Python library. Knowing how to create your own graphics will free you from the chore of looking for a function that may not exist or be difficult to use. This book will give you the tools to eliminate that process and create and customize your own graphics to satisfy your own unique requirements. Using basic geometry and trigonometry, you will learn how to create math models of 2D and 3D shapes. Using Python, you will then learn how to project these objects onto the screen of your monitor, translate and rotate them in 2D and 3D, remove hidden lines, add shading, view in perspective, view intersections between surfaces, and display shadows cast from one object onto another. You will also learn how to visualize and analyze 2D and 3D data sets, fit lines, splines and functions. The final chapter includes demonstrations from quantum mechanics, astronomy and climate science. Includes Python programs written in a clear and open style with detailed explanation of the code. What You Will Learn How to create math and Python models of 2D and 3D shapes. How to rotate, view in perspective, shade, remove hidden lines, display projected shadows, and more. How to analyze and display data sets as curves and surfaces, fit lines and functions. Who This Book Is For Python developers, scientists, engineers, and students using Python to produce technical illustrations, display and analyze data sets. Assumes familiarity with vectors, matrices, geometry and trigonometry.

Essentials of Time Series for Financial Applications

Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. Provides practical, hands-on examples in time-series econometrics Presents a more application-oriented, less technical book on financial econometrics Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction Features examples worked out in EViews (9 or higher)

Financial Forecasting and Decision Making

Many companies fail to succeed due to poor planning, which is one reason why accountants are in big demand. Skilled at forecasting, accountants can plan a company's future by determining the maximum sustainable growth and predict its external fund requirements. This book provides you with the basic tools necessary to project the balance sheet and statements of income and cash flow, enabling you to add a unique value to your client(s) work. This book will prepare you to do the following: Recall the basics of planning and forecasting financial statements Recall considerations related to a basic forecasting model Identify the evidence of growth mismanagement and develop the skills to determine maximum sustainable growth Apply statistical procedures to forecasting Analyze projected or forecasted financial statements

Power System Analysis

Power System Analysis: A Dynamic Perspective a text designed to serve as a bridge between the undergraduate course on power systems and the complex modelling and computational tools used in the dynamic analysis of practical power systems. With extensive teaching and research experience in the field, the author presents fundamental and advanced concepts using rigorous mathematical analysis and extensive time-domain simulation results. The text also includes numerous plots with clear explanation for easy understanding.

Reliability Modelling and Analysis in Discrete Time

Reliability Modelling and Analysis in Discrete Time provides an overview of the probabilistic and statistical aspects connected with discrete reliability systems. This engaging book discusses their distributional properties and dependence structures before exploring various orderings associated between different reliability structures. Though clear explanations, multiple examples, and exhaustive coverage of the basic and advanced topics of research in this area, the work gives the reader a thorough understanding of the theory and concepts associated with discrete models and reliability structures. A comprehensive bibliography assists readers who are interested in further research and understanding. Requiring only an introductory understanding of statistics, this book offers valuable insight and coverage for students and researchers in Probability and Statistics, Electrical Engineering, and Reliability/Quality Engineering. The book also includes a comprehensive bibliography to assist readers seeking to delve deeper. Includes a valuable introduction to Reliability Theory before covering advanced topics of research and real world applications Features an emphasis on the mathematical theory of reliability modeling Provides many illustrative examples to foster reader understanding

Matplotlib for Python Developers - Second Edition

"Matplotlib for Python Developers" is your comprehensive guide to creating interactive and informative data visualizations using the Matplotlib library in Python. This book covers all the essentials-from building static plots to integrating dynamic graphics with web applications. What this Book will help me do Design and customize stunning data visualizations including heatmaps and scatter plots. Integrate Matplotlib visualization seamlessly into GUI applications using GTK3 or Qt. Utilize advanced plotting libraries like Seaborn and GeoPandas for enhanced visual representation. Develop web-based dashboards and plots that dynamically update using Django. Master techniques to prepare your Matplotlib projects for deployment in a cloud-based environment. Author(s) Authors Aldrin Yim, Claire Chung, and Allen Yu are seasoned developers and data scientists with extensive experience in Python and data visualization. They bring a practical touch to technical concepts, aiming to bridge theory with hands-on applications. With such a skilled team behind this book, you'll gain both foundational knowledge and advanced insights into Matplotlib. Who is it for? This book is the ideal resource for Python developers and data analysts looking to enhance their data visualization skills. If you're familiar with Python and want to create engaging, clear, and dynamic visualizations, this book will give you the tools to achieve that. Designed for a range of expertise, from beginners understanding the basics to experienced users diving into complex integrations, this book has something for everyone. You'll be guided through every step, ensuring you build the confidence and skills needed to thrive in this area.

Statistical Data Cleaning with Applications in R

A comprehensive guide to automated statistical data cleaning The production of clean data is a complex and time-consuming process that requires both technical know-how and statistical expertise. Statistical Data Cleaning brings together a wide range of techniques for cleaning textual, numeric or categorical data. This book examines technical data cleaning methods relating to data representation and data structure. A prominent role is given to statistical data validation, data cleaning based on predefined restrictions, and data cleaning strategy. Key features: Focuses on the automation of data cleaning methods, including both theory and applications written in R. Enables the reader to design data cleaning processes for either one-off analytical purposes or for setting up production systems that clean data on a regular basis. Explores statistical techniques for solving issues such as incompleteness, contradictions and outliers, integration of data cleaning components and quality monitoring. Supported by an accompanying website featuring data and R code. This book enables data scientists and statistical analysts working with data to deepen their understanding of data cleaning as well as to upgrade their practical data cleaning skills. It can also be used as material for a course in data cleaning and analyses.

Practical Tableau

Whether you have some experience with Tableau software or are just getting started, this manual goes beyond the basics to help you build compelling, interactive data visualization applications. Author Ryan Sleeper, one of the worldâ??s most qualified Tableau consultants, complements his web posts and instructional videos with this guide to give you a firm understanding of how to use Tableau to find valuable insights in data. Over five sections, Sleeperâ??recognized as a Tableau Zen Master, Tableau Public Visualization of the Year author, and Tableau Iron Viz Championâ??provides visualization tips, tutorials, and strategies to help you avoid the pitfalls and take your Tableau knowledge to the next level. Practical Tableau sections include: Fundamentals: get started with Tableau from the beginning Chart types: use step-by-step tutorials to build a variety of charts in Tableau Tips and tricks: learn innovative uses of parameters, color theory, how to make your Tableau workbooks run efficiently, and more Framework: explore the INSIGHT framework, a proprietary process for building Tableau dashboards Storytelling: learn tangible tactics for storytelling with data, including specific and actionable tips you can implement immediately

Practical Web Scraping for Data Science: Best Practices and Examples with Python

This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set. Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases. What You'll Learn Leverage well-established best practices and commonly-used Python packages Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques Understand the managerial and legal concerns regarding web scraping Who This Book is For A data science oriented audience that is probably already familiar with Python or another programming language or analytical toolkit (R, SAS, SPSS, etc). Students or instructors in university courses may also benefit. Readers unfamiliar with Python will appreciate a quick Python primer in chapter 1 to catch up with the basics and provide pointers to other guides as well.

Understanding Experimentation Platforms

Thanks to approaches such as continuous integration and continuous delivery, companies that once introduced new products every six months are now shipping software several times a day. Reaching the market quickly is vital today, but rapid updates are impractical unless they provide genuine customer value. With this ebook, you’ll learn how online controlled experiments can help you gain customer feedback quickly so you can maintain a speedy release cycle. Using examples from Google, LinkedIn, and other organizations, Adil Aijaz, Trevor Stuart, and Henry Jewkes from Split Software explain basic concepts and show you how to build a scalable experimentation platform for conducting full-stack, comprehensive, and continuous tests. You’ll learn practical tips on best practices and common pitfalls you’re likely to face along the way. This ebook is ideal for engineers, data scientists, and product managers. Build an experimentation platform that includes a robust targeting engine, a telemetry system, a statistics engine, and a management console Dive deep into types of metrics, as well as metric frameworks, including Google’s HEART framework and LinkedIn’s 3-tiered framework Learn best practices for an building experimentation platform, such as A/A testing, power measuring, and an optimal ramp strategy Understand common pitfalls: how users are assigned across variants and control, how data is interpreted, and how metrics impact is understood

A Guide to Business Statistics

An accessible text that explains fundamental concepts in business statistics that are often obscured by formulae and mathematical notation A Guide to Business Statistics offers a practical approach to statistics that covers the fundamental concepts in business and economics. The book maintains the level of rigor of a more conventional textbook in business statistics but uses a more stream­lined and intuitive approach. In short, A Guide to Business Statistics provides clarity to the typical statistics textbook cluttered with notation and formulae. The author—an expert in the field—offers concise and straightforward explanations to the core principles and techniques in business statistics. The concepts are intro­duced through examples, and the text is designed to be accessible to readers with a variety of backgrounds. To enhance learning, most of the mathematical formulae and notation appears in technical appendices at the end of each chapter. This important resource: • Offers a comprehensive guide to understanding business statistics targeting business and economics students and professionals • Introduces the concepts and techniques through concise and intuitive examples • Focuses on understanding by moving distracting formulae and mathematical notation to appendices • Offers intuition, insights, humor, and practical advice for students of business statistics • Features coverage of sampling techniques, descriptive statistics, probability, sampling distributions, confidence intervals, hypothesis tests, and regression Written for undergraduate business students, business and economics majors, teachers, and practitioners, A Guide to Business Statistics offers an accessible guide to the key concepts and fundamental principles in statistics. DAVID M. McEVOY, PhD, is an Associate Professor in the Economics Department at Appalachian State University in Boone NC. He has published over 20 peer-reviewed articles and is coeditor of two books. Dr. McEvoy is an award-winning educator who has taught undergraduate courses in business statistics for over 10 years. DAVID M. M c EVOY, P h D, is an Associate Professor in the Economics Department at Appalachian State University in Boone NC. He has published over 20 peer-reviewed articles and is coeditor of two books. Dr. McEvoy is an award-winning educator who has taught undergraduate courses in business statistics for over 10 years.An accessible text that explains fundamental concepts in business statistics that are often obscured by formulae and mathematical notation A Guide to Business Statistics offers a practical approach to statistics that covers the fundamental concepts in business and economics. The book maintains the level of rigor of a more conventional textbook in business statistics but uses a more streamlined and intuitive approach. In short, A Guide to Business Statistics provides clarity to the typical statistics textbook cluttered with notation and formulae. The author—an expert in the field—offers concise and straightforward explanations to the core principles and techniques in business statistics. The concepts are introduced through examples, and the text is designed to be accessible