talk-data.com talk-data.com

Topic

Git

version_control source_code_management collaboration

11

tagged

Activity Trend

16 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data + AI Summit 2025 ×
Lakeflow in Production: CI/CD, Testing and Monitoring at Scale

Building robust, production-grade data pipelines goes beyond writing transformation logic — it requires rigorous testing, version control, automated CI/CD workflows and a clear separation between development and production. In this talk, we’ll demonstrate how Lakeflow, paired with Databricks Asset Bundles (DABs), enables Git-based workflows, automated deployments and comprehensive testing for data engineering projects. We’ll share best practices for unit testing, CI/CD automation, data quality monitoring and environment-specific configurations. Additionally, we’ll explore observability techniques and performance tuning to ensure your pipelines are scalable, maintainable and production-ready.

Comprehensive Guide to MLOps on Databricks

This in-depth session explores advanced MLOps practices for implementing production-grade machine learning workflows on Databricks. We'll examine the complete MLOps journey from foundational principles to sophisticated implementation patterns, covering essential tools including MLflow, Unity Catalog, Feature Stores and version control with Git. Dive into Databricks' latest MLOps capabilities including MLflow 3.0, which enhances the entire ML lifecycle from development to deployment with particular focus on generative AI applications. Key session takeaways include: Advanced MLflow 3.0 features for LLM management and deployment Enterprise-grade governance with Unity Catalog integration Robust promotion patterns across development, staging and production CI/CD pipeline automation for continuous deployment GenAI application evaluation and streamlined deployment

From Days to Seconds — Reducing Query Times on Large Geospatial Datasets by 99%

The Global Water Security Center translates environmental science into actionable insights for the U.S. Department of Defense. Prior to incorporating Databricks, responding to these requests required querying approximately five hundred thousand raster files representing over five hundred billion points. By leveraging lakehouse architecture, Databricks Auto Loader, Spark Streaming, Databricks Spatial SQL, H3 geospatial indexing and Databricks Liquid Clustering, we were able to drastically reduce our “time to analysis” from multiple business days to a matter of seconds. Now, our data scientists execute queries on pre-computed tables in Databricks, resulting in a “time to analysis” that is 99% faster, giving our teams more time for deeper analysis of the data. Additionally, we’ve incorporated Databricks Workflows, Databricks Asset Bundles, Git and Git Actions to support CI/CD across workspaces. We completed this work in close partnership with Databricks.

At Zillow, we have accelerated the volume and quality of our dashboards by leveraging a modern SDLC with version control and CI/CD. In the past three months, we have released 32 production-grade dashboards and shared them securely across the organization while cutting error rates in half over that span. In this session, we will provide an overview of how we utilize Databricks asset bundles and GitLab CI/CD to create performant dashboards that can be confidently used for mission-critical operations. As a concrete example, we'll then explore how Zillow's Data Platform team used this approach to automate our on-call support analysis, leveraging our dashboard development strategy alongside Databricks LLM offerings to create a comprehensive view that provides actionable performance metrics alongside AI-generated insights and action items from the hundreds of requests that make up our support workload.

Deploying Databricks Asset Bundles (DABs) at Scale

This session is repeated.Managing data and AI workloads in Databricks can be complex. Databricks Asset Bundles (DABs) simplify this by enabling declarative, Git-driven deployment workflows for notebooks, jobs, Lakeflow Declarative Pipelines, dashboards, ML models and more.Join the DABs Team for a Deep Dive and learn about:The Basics: Understanding Databricks asset bundlesDeclare, define and deploy assets, follow best practices, use templates and manage dependenciesCI/CD & Governance: Automate deployments with GitHub Actions/Azure DevOps, manage Dev vs. Prod differences, and ensure reproducibilityWhat’s new and what's coming up! AI/BI Dashboard support, Databricks Apps support, a Pythonic interface and workspace-based deploymentIf you're a data engineer, ML practitioner or platform architect, this talk will provide practical insights to improve reliability, efficiency and compliance in your Databricks workflows.

SQL-Based ETL: Options for SQL-Only Databricks Development

Using SQL for data transformation is a powerful way for an analytics team to create their own data pipelines. However, relying on SQL often comes with tradeoffs such as limited functionality, hard-to-maintain stored procedures or skipping best practices like version control and data tests. Databricks supports building high-performing SQL ETL workloads. Attend this session to hear how Databricks supports SQL for data transformation jobs as a core part of your Data Intelligence Platform. In this session we will cover 4 options to use Databricks with SQL syntax to create Delta tables: Lakeflow Declarative Pipelines: A declarative ETL option to simplify batch and streaming pipelines dbt: An open-source framework to apply engineering best practices to SQL based data transformations SQLMesh: an open-core product to easily build high-quality and high-performance data pipelines SQL notebooks jobs: a combination of Databricks Workflows and parameterized SQL notebooks

Boosting Data Science and AI Productivity With Databricks Notebooks

This session is repeated. Want to accelerate your team's data science workflow? This session reveals how Databricks Notebooks can transform your productivity through an optimized environment designed specifically for data science and AI work. Discover how notebooks serve as a central collaboration hub where code, visualizations, documentation and results coexist seamlessly, enabling faster iteration and development. Key takeaways: Leveraging interactive coding features including multi-language support, command-mode shortcuts and magic commands Implementing version control best practices through Git integration and notebook revision history Maximizing collaboration through commenting, sharing and real-time co-editing capabilities Streamlining ML workflows with built-in MLflow tracking and experiment management You'll leave with practical techniques to enhance your notebook-based workflow and deliver AI projects faster with higher-quality results.

The course is designed to cover advanced concepts and workflows in machine learning operations. It starts by introducing participants to continuous integration (CI) and continuous development (CD) workflows within machine learning projects, guiding them through the deployment of a sample CI/CD workflow using Databricks in the first section. Moving on to the second part, participants delve into data and model testing, where they actively create tests and automate CI/CD workflows. Finally, the course concludes with an exploration of model monitoring concepts, demonstrating the use of Lakehouse Monitoring to oversee machine learning models in production settings. Pre-requisites: Familiarity with Databricks workspace and notebooks; knowledge of machine learning model development and deployment with MLflow (e.g. intermediate-level knowledge of traditional ML concepts, development with CI/CD, the use of Python and Git for ML projects with popular platforms like GitHub) Labs: Yes Certification Path: Databricks Certified Machine Learning Professional

In this course, you’ll learn how to apply patterns to securely store and delete personal information for data governance and compliance on the Data Intelligence Platform. We’ll cover topics like storing sensitive data appropriately to simplify granting access and processing deletes, processing deletes to ensure compliance with the right to be forgotten, performing data masking, and configuring fine-grained access control to configure appropriate privileges to sensitive data.Pre-requisites: Ability to perform basic code development tasks using the Databricks workspace (create clusters, run code in notebooks, use basic notebook operations, import repos from git, etc), intermediate programming experience with SQL and PySpark (extract data from a variety of file formats and data sources, apply a number of common transformations to clean data, reshape and manipulate complex data using advanced built-in functions), intermediate programming experience with Delta Lake (create tables, perform complete and incremental updates, compact files, restore previous versions etc.). Beginner experience with Lakeflow Declarative Pipelines and streaming workloads.Labs: YesCertification Path: Databricks Certified Data Engineer Professional

In this course, you’ll learn how to optimize workloads and physical layout with Spark and Delta Lake and and analyze the Spark UI to assess performance and debug applications. We’ll cover topics like streaming, liquid clustering, data skipping, caching, photons, and more. Pre-requisites: Ability to perform basic code development tasks using the Databricks workspace (create clusters, run code in notebooks, use basic notebook operations, import repos from git, etc), intermediate programming experience with SQL and PySpark (extract data from a variety of file formats and data sources, apply a number of common transformations to clean data, reshape and manipulate complex data using advanced built-in functions), intermediate programming experience with Delta Lake (create tables, perform complete and incremental updates, compact files, restore previous versions etc.). Labs: Yes Certification Path: Databricks Certified Data Engineer Professional

In this course, you’ll learn how to Incrementally process data to power analytic insights with Structured Streaming and Auto Loader, and how to apply design patterns for designing workloads to perform ETL on the Data Intelligence Platform with Lakeflow Declarative Pipelines. First, we’ll cover topics including ingesting raw streaming data, enforcing data quality, implementing CDC, and exploring and tuning state information. Then, we’ll cover options to perform a streaming read on a source, requirements for end-to-end fault tolerance, options to perform a streaming write to a sink, and creating an aggregation and watermark on a streaming dataset. Pre-requisites: Ability to perform basic code development tasks using the Databricks workspace (create clusters, run code in notebooks, use basic notebook operations, import repos from git, etc.), intermediate programming experience with SQL and PySpark (extract data from a variety of file formats and data sources, apply a number of common transformations to clean data, reshape and manipulate complex data using advanced built-in functions), intermediate programming experience with Delta Lake (create tables, perform complete and incremental updates, compact files, restore previous versions etc.). Beginner experience with streaming workloads and familiarity with Lakeflow Declarative Pipelines. Labs: No Certification Path: Databricks Certified Data Engineer Professional