talk-data.com talk-data.com

Topic

Kubernetes

container_orchestration devops microservices

27

tagged

Activity Trend

40 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Engineering Books ×
SQL Server 2019 Revealed: Including Big Data Clusters and Machine Learning

Get up to speed on the game-changing developments in SQL Server 2019. No longer just a database engine, SQL Server 2019 is cutting edge with support for machine learning (ML), big data analytics, Linux, containers, Kubernetes, Java, and data virtualization to Azure. This is not a book on traditional database administration for SQL Server. It focuses on all that is new for one of the most successful modernized data platforms in the industry. It is a book for data professionals who already know the fundamentals of SQL Server and want to up their game by building their skills in some of the hottest new areas in technology. SQL Server 2019 Revealed begins with a look at the project's team goal to integrate the world of big data with SQL Server into a major product release. The book then dives into the details of key new capabilities in SQL Server 2019 using a “learn by example” approach for Intelligent Performance, security, mission-criticalavailability, and features for the modern developer. Also covered are enhancements to SQL Server 2019 for Linux and gain a comprehensive look at SQL Server using containers and Kubernetes clusters. The book concludes by showing you how to virtualize your data access with Polybase to Oracle, MongoDB, Hadoop, and Azure, allowing you to reduce the need for expensive extract, transform, and load (ETL) applications. You will then learn how to take your knowledge of containers, Kubernetes, and Polybase to build a comprehensive solution called Big Data Clusters, which is a marquee feature of 2019. You will also learn how to gain access to Spark, SQL Server, and HDFS to build intelligence over your own data lake and deploy end-to-end machine learning applications. What You Will Learn Implement Big Data Clusters with SQL Server, Spark, and HDFS Create a Data Hub with connections to Oracle, Azure, Hadoop, and other sources Combine SQL and Spark to build a machine learning platform for AI applications Boost your performance with no application changes using Intelligent Performance Increase security of your SQL Server through Secure Enclaves and Data Classification Maximize database uptime through online indexing and Accelerated Database Recovery Build new modern applications with Graph, ML Services, and T-SQL Extensibility with Java Improve your ability to deploy SQL Server on Linux Gain in-depth knowledge to run SQL Server with containers and Kubernetes Know all the new database engine features for performance, usability, and diagnostics Use the latest tools and methods to migrate your database to SQL Server 2019 Apply your knowledge of SQL Server 2019 to Azure Who This Book Is For IT professionals and developers who understand the fundamentals of SQL Server and wish to focus on learning about the new, modern capabilities of SQL Server 2019. The book is for those who want to learn about SQL Server 2019 and the new Big Data Clusters and AI feature set, support for machine learning and Java, how to run SQL Server with containers and Kubernetes, and increased capabilities around Intelligent Performance, advanced security, and high availability.

Deploying a Database Instance in an IBM Cloud Private Cluster on IBM Z

This IBM® Redpaper™ publication shows you how to deploy a database instance within a container using an IBM Cloud™ Private cluster on IBM Z®. A preinstalled IBM Spectrum™ Scale 5.0.3 cluster file system provides back-end storage for the persistent volumes bound to the database. A container is a standard unit of software that packages code and all its dependencies, so the application runs quickly and reliably from one computing environment to another. By default, containers are ephemeral. However, stateful applications, such as databases, require some type of persistent storage that can survive service restarts or container crashes. IBM provides several products helping organizations build an environment on an IBM Z infrastructure to develop and manage containerized applications, including dynamic provisioning of persistent volumes. As an example for a stateful application, this paper describes how to deploy the relational database MariaDB using a Helm chart. The IBM Spectrum Scale V5.0.3 cluster file system is providing back-end storage for the persistent volumes. This document provides step-by-step guidance regarding how to install and configure the following components: IBM Cloud Private 3.1.2 (including Kubernetes) Docker 18.03.1-ce IBM Storage Enabler for Containers 2.0.0 and 2.1.0 This Redpaper demonstrates how we set up the example for a stateful application in our lab. The paper gives you insights about planning for your implementation. IBM Z server hardware, the IBM Z hypervisor z/VM®, and the IBM Spectrum Scale cluster file system are prerequisites to set up the example environment. The Redpaper is written with the assumption that you have familiarity with and basic knowledge of the software products used in setting up the environment. The intended audience includes the following roles: Storage administrators IT/Cloud administrators Technologists IT specialists

Streaming Data

Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don’t have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won’t find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps

Pro SQL Server on Linux: Including Container-Based Deployment with Docker and Kubernetes

Get SQL Server up and running on the Linux operating system and containers. No database professional managing or developing SQL Server on Linux will want to be without this deep and authoritative guide by one of the most respected experts on SQL Server in the industry. Get an inside look at how SQL Server for Linux works through the eyes of an engineer on the team that made it possible. Microsoft SQL Server is one of the leading database platforms in the industry, and SQL Server 2017 offers developers and administrators the ability to run a database management system on Linux, offering proven support for enterprise-level features and without onerous licensing terms. Organizations invested in Microsoft and open source technologies are now able to run a unified database platform across all their operating system investments. Organizations are further able to take full advantage of containerization through popular platforms such as Docker and Kubernetes. Pro SQL Server on Linux walks you through installing and configuring SQL Server on the Linux platform. The author is one of the principal architects of SQL Server for Linux, and brings a corresponding depth of knowledge that no database professional or developer on Linux will want to be without. Throughout this book are internals of how SQL Server on Linux works including an in depth look at the innovative architecture. The book covers day-to-day management and troubleshooting, including diagnostics and monitoring, the use of containers to manage deployments, and the use of self-tuning and the in-memory capabilities. Also covered are performance capabilities, high availability, and disaster recovery along with security and encryption. The book covers the product-specific knowledge to bring SQL Server and its powerful features to life on the Linux platform, including coverage of containerization through Docker and Kubernetes. What You'll Learn Learn about the history and internal of the unique SQL Server on Linux architecture. Install and configure Microsoft’s flagship database product on the Linux platform Manage your deployments using container technology through Docker and Kubernetes Know the basics of building databases, the T-SQL language, and developing applications against SQL Server on Linux Use tools and features to diagnose, manage, and monitor SQL Server on Linux Scale your application by learning the performance capabilities of SQL Server Deliver high availability and disaster recovery to ensure business continuity Secure your database from attack, and protect sensitive data through encryption Take advantage of powerful features such as Failover Clusters, Availability Groups, In-Memory Support, and SQL Server’sSelf-Tuning Engine Learn how to migrate your database from older releases of SQL Server and other database platforms such as Oracle and PostgreSQL Build and maintain schemas, and perform management tasks from both GUI and command line Who This Book Is For Developers and IT professionals who are new to SQL Server and wish to configure it on the Linux operating system. This book is also useful to those familiar with SQL Server on Windows who want to learn the unique aspects of managing SQL Server on the Linux platform and Docker containers. Readers should have a grasp of relational database concepts and be comfortable with the SQL language.

IBM Spectrum Connect and IBM Storage Enabler for Containers: Practical Example with IBM FlashSystem A9000

This IBM® Redpaper™ publication provides an overview of containers and their framework. Container technology enables prepackaged and pre-configured software with the elements that are needed to run in any environment. Because they are meant to be portable, containers normally restrict applications from storing data on external storage. To overcome this limitation, IBM has developed a solution to provide persistent storage for containers on IBM storage systems, known as the IBM Storage Enabler for Containers. The Enabler tightly integrates with IBM Spectrum™ Connect (formerly IBM Spectrum Control™ Base Edition). IBM Storage Enabler for Containers v1.0 extends IBM Spectrum Connect to Kubernetes orchestrated container environments. The paper focuses on containers implementation, management, and control by using IBM Spectrum Connect and IBM Storage Enabler for Containers plug-in, with IBM FlashSystem® A9000 or A9000R.

Camel in Action, Second Edition

Camel in Action, Second Edition is the most complete Camel book on the market. Written by core developers of Camel and the authors of the highly acclaimed first edition, this book distills their experience and practical insights so that you can tackle integration tasks like a pro. About the Technology Apache Camel is a Java framework that implements enterprise integration patterns (EIPs) and comes with over 200 adapters to third-party systems. A concise DSL lets you build integration logic into your app with just a few lines of Java or XML. By using Camel, you benefit from the testing and experience of a large and vibrant open source community. About the Book Camel in Action, Second Edition is the definitive guide to the Camel framework. It starts with core concepts like sending, receiving, routing, and transforming data. It then goes in depth on many topics such as how to develop, debug, test, deal with errors, secure, scale, cluster, deploy, and monitor your Camel applications. The book also discusses how to run Camel with microservices, reactive systems, containers, and in the cloud. What's Inside Coverage of all relevant EIPs Camel microservices with Spring Boot Camel on Docker and Kubernetes Error handling, testing, security, clustering, monitoring, and deployment Hundreds of examples in Java and XML About the Reader Readers should be familiar with Java. This book is accessible to beginners and invaluable to experts. About the Authors Claus Ibsen is a senior principal engineer working for Red Hat specializing in cloud and integration. He has worked on Apache Camel for the last nine years where he heads the project. Claus lives in Denmark. Jonathan Anstey is an engineering manager at Red Hat and a core Camel contributor. He lives in Newfoundland, Canada. Quotes I highly recommend this book to anyone with even a passing interest in Apache Camel. Do take Camel for a ride...and don't get the hump! - From the Foreword by James Strachan, Creator of Apache Camel Claus and Jon are great writers, relying on figures and diagrams where needed and presenting lots of code snippets and worked examples. - From the Foreword by Dr. Mark Little, Technical Director of JBoss The second edition of this all-time classic is an indispensable companion for your Apache Camel rides. - Gregor Zurowski, Apache Camel Committer The absolute best way to learn and use Camel - top to bottom, front to back, and all the way through. Camel is a fantastic tool - every Java coder should have a copy of this book. - Rick Wagner, Red Hat An excellent book and the definite reference for experienced engineers. - Yan Guo, EventBrite

Mastering Apache Spark 2.x - Second Edition

Mastering Apache Spark 2.x is the essential guide to harnessing the power of big data processing. Dive into real-time data analytics, machine learning, and cluster computing using Apache Spark's advanced features and modules like Spark SQL and MLlib. What this Book will help me do Gain proficiency in Spark's batch and real-time data processing with SparkSQL. Master techniques for machine learning and deep learning using SparkML and SystemML. Understand the principles of Spark's graph processing with GraphX and GraphFrames. Learn to deploy Apache Spark efficiently on platforms like Kubernetes and IBM Cloud. Optimize Spark cluster performance by configuring parameters effectively. Author(s) Romeo Kienzler is a seasoned professional in big data and machine learning technologies. With years of experience in cloud-based distributed systems, Romeo brings practical insights into leveraging Apache Spark. He combines his deep technical expertise with a clear and engaging writing style. Who is it for? This book is tailored for intermediate Apache Spark users eager to deepen their knowledge in Spark 2.x's advanced features. Ideal for data engineers and big data professionals seeking to enhance their analytics pipelines with Spark. A basic understanding of Spark and Scala is necessary. If you're aiming to optimize Spark for real-world applications, this book is crafted for you.